Building Skills in Python
Release 2.6.5

Steven F. Lott

April 20, 2010

CONTENTS

I Front Matter

1 Preface

1.1 Why Read This Book? e e
1.2 Audience e e
1.3 Organization of This Book e
1.4 Limitations L e e e e
1.5 Programming Style L
1.6 Conventions Used in This Book
1.7 Acknowledgements L e e e e

II Language Basics

2 Background and History

2.1 History o o e e e e
2.2 Features of Python e
2.3 CompariSons v v e e e e e e e e e e e e e e e e e
2.4 Some Jargono oo e e e e e e

3 Python Installation

3.1 Windows Installation e
3.2 Macintosh Installation L
3.3 GNU/Linux and UNIX Overview ot i ittt e
3.4 “Build from Scratch” Installation

4 Getting Started

4.1 Command-Line Interaction e e e e e e
4.2 The IDLE Development Environment i
4.3 Script Modeo e e
4.4 Getting Help o e
4.5 Syntax Formalities oL
4.6 EXErcises e e e e e
4.7 Other Tools. o e
4.8 Style Notes: Wise Choice of File Names
5 Simple Numeric Expressions and Output
5.1 Seeing Output with the print () Function (or print Statement)
5.2 Numeric Types and Operators 0 i i i e e
5.3 Numeric Conversion (or “Factory”) Functions

w

S © © oo~ ot

15
15
15
16
19

21
21
24
25
28

7

5.4 Built-In Math Functions

5.5 Expression Exercises Lo e e
5.6 Expression Style Notes o e
Advanced Expressions

6.1 Using Modules L
6.2 Themath Module
6.3 The random Module
6.4 Advanced Expression Exercises oL o
6.5 Bit Manipulation Operators e
6.6 Division Operators e e

Variables, Assignment and Input

7.1 Variables e e e e e e
7.2 The Assignment Statement L L L
7.3 Input Functions e e
7.4 Multiple Assignment Statement L
7.5 Thedel Statement e e e e e e
7.6 Interactive Mode Revisited e
7.7 Variables, Assignment and Input Function Exercises
7.8 Variables and Assignment Style Notes oo o
Truth, Comparison and Conditional Processing

8.1 Truth and Logic o
8.2 CompariSOns e e e e e e e
8.3 Conditional Processing: the if Statement 0oL
8.4 The pass Statement
8.5 The assert Statement e
8.6 The if-else Operator e e
8.7 Condition Exercises 0 e e e e e e
8.8 Condition Style Notes e
Loops and Iterative Processing

9.1 TIterative Processing: For All and There Exists
9.2 Iterative Processing: The for Statement oL
9.3 TIterative Processing: The while Statement
9.4 More Iteration Control: break and continue
9.5 Tteration EXercises L e e e e e e
9.6 Condition and Loops Style Notes
9.7 A Digression e

10 Functions

10.1 Semantics v vt e e e e e e e e e e e e e e e e e
10.2 Function Definition: The def and return Statements
10.3 Function Use 0 0 e e e e e e e e e
10.4 Function Varieties 0 o L e e e e e e e e
10.5 Some Examples e e e e e e e e
10.6 Hacking Mode e e
10.7 More Function Definition Features o oL
10.8 Function Exercises L e e
10.9 Object Method Functions 0 e
10.10 Functions Style Notes L e e e

11 Additional Notes On Functions

11.1 Functions and Namespaces o i v i i it it e e e e e e e e e e

61
61
61
63
64
66
68

71
71
73
(0]
78
78
79
80
81

83
83
85
88
90
91
92
93
94

95
95
96
97
98
100
103
104

107
107
109
110
111
112
113
115
118
121
122

125

11.2
11.3
11.4

The global Statement
Call By Value and Call By Reference
Function Objects

IIT Data Structures

12 Sequences: Strings, Tuples and Lists

12.1
12.2
12.3
12.4

Sequence Semantics
Overview of Sequences
Exercises o
Style Notes

13 Strings

13.1
13.2
13.3
134
13.5
13.6
13.7
13.8
13.9
13.10

String Semanticso oL
String Literal Values
String Operations
String Comparison Operations
String Statements
String Built-in Functions
String Methods oL
String Modules L.
String Exercises
Digression on Immutability of Strings

14 Tuples

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

15 Lists
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

Tuple Semantics
Tuple Literal Values
Tuple Operations
Tuple Comparison Operations
Tuple Statements
Tuple Built-in Functions
Tuple Exercises
Digression on The Sigma Operator

List Semantics
List Literal Values
List Operations
List Comparison Operations
List Statements
List Built-in Functions
List Methods
Using Lists as Function Parameter Defaults
List Exercises

16 Mappings and Dictionaries

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Dictionary Semantics
Dictionary Literal Values
Dictionary Operations
Dictionary Comparison Operations.
Dictionary Statements
Dictionary Built-in Functions
Dictionary Methods
Using Dictionaries as Function Parameter Defaults

131

135
135
136
139
139

141
141
141
143
146
146
147
148
151
152
153

155
155
155
156
157
157
158
160
161

163
163
163
164
164
165
166
167
169
170

175
175
176
176
178
178
179
180
181

17 Sets

16.9

Dictionary Exercises o . o e e e e e e

16.10 Advanced Parameter Handling For Functions

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

Set Semantics e e e e e e e e
Set Literal Values
Set Operations L e e e
Set Comparison Operators o e
Set Statements L e e e e e e
Set Built-in Functions e e
Set Methods e
Using Sets as Function Parameter Defaults,
Set Exercises e e

18 Exceptions

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

Exception Semantics Lo
Basic Exception Handling L
Raising Exceptions. o . o e
An Exceptional Example
Complete Exception Handling and The finally Clause
Exception Functions Lo e
Exception Attributes e e
Built-in Exceptions e e e e e e
Exception Exercises e e e e e e

18.10 Style Notes o o o o o e
1811 A Digression . . . o o oo e e e e

19 Iterators and Generators

20 Files

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8

Tterator Semantics e
Generator Function Semantics
Defining a Generator Function L oo
Generator Functions e
Generator Statements L e e e e e e e
Tterators Everywhere oL
Generator Function Example L
Generator Exercises

File Semantics e
File Organization and Structure L e
Additional Background e e
Built-in Functions e e e
File Statements L e e e e e e
File Methods e
Several Examples L
File Exercises e e e

21 Functional Programming with Collections

21.1
21.2
21.3
21.4
21.5
21.6
21.7

Lists of Tuples o o e
List Comprehensions L L e
Sequence Processing Functions: map(), filter() and reduce()
Advanced List Sorting
The Lambda o . o e e e e e e
Multi-Dimensional Arrays or Matrices oo o
Exercises o e e e

187
187
187
188
190
191
191
192
194
195

199
199
200
203
204
206
206
207
208
210
211
212

213
213
214
215
216
217
217
218
219

221
221
222
223
224
226
226
228
232

22 Advanced Mapping Techniques

22.1 Default Dictionaries
22.2 Inverting a Dictionary
22.3 Exercises

IV Data 4+ Processing = Objects

23 Classes

23.1 Semantics
23.2 Class Definition: the class Statement . . .
23.3 Creating and Using Objects
23.4 Special Method Names
23.5 Some Examples
23.6 Object Collaboration
23.7 Class Definition Exercises

24 Advanced Class Definition

24.1 Inheritance
24.2 Polymorphism
24.3 Built-in Functions

24.4 Collaborating with max(), min() and sort()

24.5 Initializer Techniques
24.6 Class Variables
24.7 Static Methods and Class Method
24.8 Design Approaches.
24.9 Advanced Class Definition Exercises
24.10 Style Notes

25 Some Design Patterns

25.1 Factory
25.2 State
25.3 Strategy
25.4 Design Pattern Exercises

26 Creating or Extending Data Types

26.1 Semantics of Special Methods
26.2 Basic Special Methods
26.3 Special Attribute Names
26.4 Numeric Type Special Methods
26.5 Collection Special Method Names

26.6 Collection Special Method Names for Iterators and Iterable
26.7 Collection Special Method Names for Sequences

26.8 Collection Special Method Names for Sets .

26.9 Collection Special Method Names for Mappings

26.10 Mapping Example
26.11 Iterator Examples
26.12 Extending Built-In Classes
26.13 Special Method Name Exercises

27 Attributes, Properties and Descriptors

27.1 Semantics of Attributes
27.2 Properties oL
27.3 Descriptors Lo

27.4 Attribute Handling Special Method Names

251
251
252
253

255

259
259
262
263
264
266
269
271

287
287
292
294
296
296
297
299
299
301
303

307
307
310
313
315

319
320
321
322
322
327
329
330
331
332
333
334
336
336

343
343
344
346
348

27.5 Attribute Access Exercises L 349
28 Decorators 351
28.1 Semantics of Decorators L 351
28.2 Built-in Decorators oL e 352
28.3 Defining Decorators L L e e e e 354
28.4 Defining Complex Decorators L e 355
28.5 Decorator Exercises oL e e e e e e e 356
29 Managing Contexts: the with Statement 357
29.1 Semantics of a Context L 357
29.2 Using a Context o o o e e e 358
29.3 Defining a Context Manager Function L oL 358
29.4 Defining a Context Manager Class vttt 360
29.5 Context Manager Exercises 361
V Components, Modules and Packages 363
30 Modules 367
30.1 Module Semanticso e e e 367
30.2 Module Definition L o e e e 368
30.3 Module Use: The import Statement 370
30.4 Finding Modules: The Path o 372
30.5 Variations on An import Theme 373
30.6 The exec Statement L e e 375
30.7 Module Exerciseso e e 375
30.8 Style Notes o i e e e e 377
31 Packages 379
31.1 Package Semantics e e e e 379
31.2 Package Definition L L 380
31.3 Package Use e e 381
31.4 Package Exercises e 381
315 Style Notes . . . o o v o o e e 381
32 The Python Library 383
32.1 Overview of the Python Library 0 383
32.2 Most Useful Library Sections o .. o0t 385
32.3 Library Exercises L e e e e e 393
33 Complex Strings: the re Module 395
33.1 Semanticso e 395
33.2 Creating a Regular Expression e 396
33.3 Using a Regular Expression L o e 397
33.4 Regular Expression Exercises L o 399
34 Dates and Times: the time and datetime Modules 401
34.1 Semantics: What is Time? 401
34.2 Some Class Definitions L e 403
34.3 Creating a Date-Time 0 e 404
34.4 Date-Time Calculations and Manipulations 405
34.5 Presenting a Date-Time oL e 407
34.6 Formatting Symbols L e 408
34.7 Time EXercises e e e e e 409

Vi

34.8 Additional time Module Features

35 File Handling Modules
35.1 Theos.path Module
35.2 Theos Module L e
35.3 The fileinput Module L
35.4 The glob and fomatch Modules o000
35.5 The tempfile Module. L
35.6 The shutil Module o L e
35.7 The File Archive Modules: tarfile and zipfile
35.8 Thesys Module e
35.9 Additional File-Processing Modules
35.10 File Module Exercises e e e

36 File Formats: CSV, Tab, XML, Logs and Others
36.1 OVEIVIEW v o o e
36.2 Comma-Separated Values: The csv Module
36.3 Tab Files: Nothing Special e
36.4 Property Files and Configuration (or .INI) Files: The ConfigParser Module
36.5 Fixed Format Files, A COBOL Legacy: The codecs Module
36.6 XML Files: The xml.etree and xml.sax Modules
36.7 Log Files: The logging Module
36.8 File Format Exercises e
36.9 The DOM Class Hierarchy e

37 Programs: Standing Alone
37.1 Kinds of Programs oL e
37.2 Command-Line Programs: Servers and Batch Processing
37.3 The optparse Module L e
37.4 Command-Line Examples e
37.5 Other Command-Line Features
37.6 Command-Line Exercises L e
37.7 The getopt Module L

38 Architecture: Clients, Servers, the Internet and the World Wide Web
38.1 About TCP/IP e
38.2 The World Wide Web and the HTTP protocol
38.3 Writing Web Clients: The urllib2 Module
38.4 Writing Web Applications
38.5 Sessions and State L L e
38.6 Handling Form Inputs o e
38.7 Web Services e e e
38.8 Client-Server Exercises o e e e
38.9 Socket Programmingo

V1 Projects

39 Areas of the Flag
39.1 Basic Red, White and Blue e
39.2 The Stars o e e e e

40 Bowling Scores

41 Musical Pitches

411
413
414
416
417
418
419
419
423
424
425

427
427
428
431
432
434
436
441
446
446

451
451
453
455
458
459
461
461

465
465
466
467
469
477
478
480
485
491

499

503
503
504

507

509

vii

41.1
41.2
41.3
41.4
41.5

Equal Temperament e e e e e
OVEItONES v o v o e e e e e e e e
Circle of Fifths e e e e
Pythagorean Tuning e e e e e e e e e e
Five-Tone Tuning 0 o e e

42 What Can be Computed?

42.1
42.2
42.3
42.4
42.5
42.6
42.7
42.8
42.9

Background e e e e e e e e
The Turing Machine e e e e e e e e
Example Machine e e e e
Turing Machine Implementation L oo o
Exercise 1. o e e e e
Test Machines o . o e
Exercise 2. . . . Lo e e e e
Better Implementations L
Exercise 3. oL e e

4210 CONSEQUENCES « « « v v v v vt e i e e e e e e e e e e
42.11 Other Applications e e e e
42.12 Alternative Specifications Lo
4213 Exercise 4. . . . L e e e e

43 Mah Jongg Hands

43.1
43.2
43.3
43.4
43.5
43.6
43.7
43.8

Tile Class Hierarchy o . 0 o o e
Wall Class o o e
TileSet Class Hierarchy« . . 0 e e
Hand Class e e e e e e e e e e e
Some Test Cases v v v i e e e e e e e e e e e
Hand Scoring - Points o . o e
Hand Scoring - Doubles o e
Limit Hands o o e e

44 Chess Game Notation

44.1
44.2
44.3
44.4
44.5

Algebraic Notation e e e
Algorithms for Resolving Moves e
Descriptive Notation o o
Game State e e e e e e e e e
PGN Processing Specifications L o

VII Back Matter

45 Bibliography

45.1
45.2
45.3
45.4
45.5

Use CaseS .« v v v v e e e e e e e e e e e e e e e
Computer Science oL e
Design Patternso
Languages o e e e e e e e e
Problem Domains oL e

46 Indices and Tables

47 Production Notes

Bibliography

511

515
515
517
518
519
521
521
522
923
524
525
525
526
928

529
529
931
532
534
535
937
939
542

545
545
549
552
552
953

555

557
557
957
957
557
557

559
561

563

viii

Building Skills in Python, Release 2.6.5

A Programmer’s Introduction to Python

Legal Notice EUUFEHIFIHFLNN This work is licensed under a Creative Commons License. You are free

to copy, distribute, display, and perform the work under the following conditions:

e Attribution. You must give the original author, Steven F. Lott, credit.
e« Noncommercial. You may not use this work for commercial purposes.
e No Derivative Works. You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work.

CONTENTS 1

http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/

Building Skills in Python, Release 2.6.5

2 CONTENTS

Part 1

Front Matter

CHAPTER
ONE

PREFACE

The Zen Of Python — Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one— and preferably only one —obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.

Although never is often better than right now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea — let’s do more of those!

1.1 Why Read This Book?

You need this book because you need to learn Python. Here are a few reasons why you might need to learn
Python

You need a programming language which is easy to read and has a vast library of modules focused on
solving the problems you're faced with.

You saw an article about Python specifically, or dynamic languages in general, and want to learn more.
You're starting a project where Python will be used or is in use.
A colleague has suggested that you look into Python.

You’ve run across a Python code sample on the web and need to learn more.

Python reflects a number of growing trends in software development, putting it at or near the leading edge of
good programming languages. It is a very simple language surrounded by a vast library of add-on modules.
It is an open source project, supported by many individuals. It is an object-oriented language, binding data
and processing into class definitions. It is a platform-independent, scripted language, with complete access

Building Skills in Python, Release 2.6.5

to operating system API‘s. It supports integration of complex solutions from pre-built components. It is a
dynamic language, which avoids many of the complexities and overheads of compiled languages.

This book is a close-to-complete presentation of the Python language. It is oriented toward learning, which
involves accumulating many closely intertwined concepts. In our experience teaching, coaching and doing
programming, there is an upper limit on the “clue absorption rate”. In order to keep within this limit, we’ve
found that it helps to present a language as ever-expanding layers. We’'ll lead you from a very tiny, easy to
understand subset of statements to the entire Python language and all of the built-in data structures. We've
also found that doing a number of exercises helps internalize each language concept.

Three Faces of a Language. There are three facets to a programming language: how you write it, what
it means, and the additional practical considerations that make a program useful. While many books cover
the syntax and semantics of Python, in this book we’ll also cover the pragmatic considerations. Our core
objective is to build enough language skills that good object-oriented design will be an easy next step.

The syntaz of a language is covered in the language reference manual available online. In the case of relatively
simple languages, like Python, the syntax is simple. We’ll provide additional examples of language syntax.

The semantics of the language can be a bit more slippery than the syntax. Some languages involve obscure
or unique concepts that make it difficult to see what a statement really means. In the case of languages
like Python, which have extensive additional libraries, the burden is doubled. First, one has to learn the
language, then one has to learn the libraries. The number of open source packages made available by
the Python community can increase the effort required to understand an entire architecture. The reward,
however, is high-quality software based on high-quality components, with a minimum of development and
integration effort.

Many languages offer a number of tools that can accomplish the same basic task. Python is no exception. It
is often difficult to know which of many alternatives performs better or is easier to adapt. We’ll try to focus
on showing the most helpful approach, emphasizing techniques that apply for larger development efforts.
We'll try to avoid “quick and dirty” solutions that are only appropriate when learning the language.

1.2 Audience

Professional programmers who need to learn Python are our primary audience. We provide specific help for
you in a number of ways.

e Since Python is simple, we can address newbie programmers who don’t have deep experience in a
number of other languages. We will call out some details in specific newbie sections. Experienced
programmers can skip these sections.

¢ Since Python has a large number of sophisticated built-in data structures, we address these separately
and fully. An understanding of these structures can simplify complex programs.

e The object-orientation of Python provides tremendous flexibility and power. This is a deep subject,
and we will provide an introduction to object-oriented programming in this book. More advanced
design techniques are addressed in Building Skills in Object-Oriented Design, [Lott05].

e The accompanying libraries make it inexpensive to develop complex and complete solutions with min-
imal effort. This, however, requires some time to understand the packaged components that are avail-
able, and how they can be integrated to create useful software. We cover some of the most important
modules to specifically prevent programmers from reinventing the wheel with each project.

Instructors are a secondary audience. If you are looking for classroom projects that are engaging, compre-
hensible, and focus on perfecting language skills, this book can help. Each chapter in this book contains
exercises that help students master the concepts presented in the chapter.

This book assumes an basic level of skill with any of the commonly-available computer systems. The following
skills will be required.

6 Chapter 1. Preface

Building Skills in Python, Release 2.6.5

e Download and install open-source application software. Principally, this is the Python distribution kit
from http://www.python.org. However, we will provide references to additional software components.

e Create text files. We will address doing this in IDLE, the Python Integrated Development Environ-
ment (IDE). We will also talk about doing this with a garden-variety text editor like Komodo, VIM,
EMACS, TEXTPAD and BBEDIT.

e Run programs from the command-line. This includes the DOS command shell in Microsoft Windows,
or the Terminal tool in Linux or Apple’s Macintosh OS X.

o Be familiar with high-school algebra and some trigonometry. Some of the exercises make heavy use of
basic algebra and trigonometry.

When you've finished with this book you should be able to do the following.

e Use of the core procedural programming constructs: variables, statements, exceptions, functions. We
will not, for example, spend any time on design of loops that terminate properly.

e Create class definitions and subclasses. This includes managing the basic features of inheritance, as
well as overloaded method names.

e Use the Python collection classes appropriately, this includes the various kinds of sequences, and the
dictionary.

1.3 Organization of This Book

This book falls into five distinct parts. To manage the clue absorption rate, the first three parts are organized
in a way that builds up the language in layers from central concepts to more advanced features. Each layer
introduces a few new concepts, and is presented in some depth. Programming exercises are provided to
encourage further exploration of each layer. The last two parts cover the extension modules and provide
specifications for some complex exercises that will help solidify programming skills.

Some of the chapters include digressions on more advanced topics. These can be skipped, as they cover
topics related to programming in general, or notes about the implementation of the Python language. These
are reference material to help advanced students build skills above and beyond the basic language.

The first part, Language Basics introduces the basic feartures of the Python language, covering most of the
statements but sticking with basic numeric data types.

Background and History provides some history and background on Python. Getting Started covers installation
of Python, using the interpreter interactively and creating simple program files.

Simple Numeric Fxpressions and Oulpul covers the basic expressions and core numeric types. Variables,
Assignment and Input introduces variables, assignment and some simple input constructs. Truth, Comparison
and Conditional Processing adds truth and conditions to the language. Loops and Iterative Processing.

In Functions we’ll add basic function definition and function call constructs; Additional Notes On Functions
introduces some advanced function call features.

The second part, Data Structures adds a number of data structures to enhance the expressive power of the
language.

In this part we will use a number of different kinds of objects, prior to designing our own objects. Sequences:
Strings, Tuples and Lists extends the data types to include various kinds of sequences. These include Strings
, Tuples and Lists. Mappings and Dictionaries describes mappings and dictionaries. Fxceptions covers
exception objects, and exception creation and handling.

Files covers files and several closely related operating system (OS) services. Functional Programming with
Collections describes more advanced sequence techniques, including multi-dimensional matrix processing.
This part attempts to describe a reasonably complete set of built-in data types.

1.3. Organization of This Book 7

http://www.python.org

Building Skills in Python, Release 2.6.5

The third part, Data + Processing = Objects, unifies data and processing to define the object-oriented
programming features of Python.

Classes introduces basics of class definitions and introduces simple inheritance. Advanced Class Definition
adds some features to basic class definitions. Some Design Patterns extend this discussion further to include
several common design patterns that use polymorphism. Creating or Extending Data Types describes the
mechanism for adding types to Python that behave like the built-in types.

Part four, Components, Modules and Packages, describes modules, which provide a higher-level grouping
of class and function definitions. It also summarizes selected extension modules provided with the Python
environment.

Modules provides basic semantics and syntax for creating modules. We cover the organization of packages
of modules in Packages. An overview of the Python library is the subject of The Python Library. Complex
Strings: the re Module covers string pattern matching and processing with the re module. Dates and Times:
the time and datetime Modules covers the time and datetime module. Programs: Standing Alone covers
the creation of main programs. We touch just the tip of the client-server iceberg in Architecture: Clients,
Servers, the Internet and the World Wide Web.

Some of the commonly-used modules are covered during earlier chapters. In particular the math and random
modules are covered in The math Module and the string module is covered in Strings. Fliles touches on
fileinput, os, os.path, glob, and fnmatch.

Finally, part five, Projects, presents several larger and more complex programming problems. These are
ranked from relatively simple to quite complex.

Areas of the Flag covers computing the area of the symbols on the American flag. Bowling Scores covers
scoring in a game of bowling. Musical Pitches has several algorithms for the exact frequencies of musical
pitches. What Can be Computed? has several exercises related to computability and the basics of finite state
machines. Mah Jongg Hands describes algorithms for evaluating hands in the game of Maj Jongg. Chess
Game Notation deals with interpreting the log from a game of chess.

1.4 Limitations

This book can’t cover everything Python. There are a number of things which we will not cover in depth,
and some things which we can’t even touch on lightly. This list will provide you directions for further study.

e The rest of the Python library. The library is a large, sophisticated, rapidly-evolving collection of
software components. We selected a few modules that are widely-used. There are many books which
cover the library in general, and books which cover specific modules in depth.

o The subject of Object-Oriented (OO) design is the logical next step in learning Python. That topic is
covered in Building Skills in Object-Oriented Design [Lott05].

o Database design and programming requires a knowledge of Python and a grip on OO design. It requires
a digression into the relational model and the SQL language.

o Graphical User Interface (GUI) development requires a knowledge of Python, OO design and database
design. There are two commonly-used toolkits: Tkinter and pyGTK.

e Web application development, likewise, requires a knowledge of Python, OO design and database
design. This topic requires digressions into internetworking protocols, specifically HT'TP and SOAP,
plus HTML, XML and CSS languages. There are numerous web development frameworks for Python.

8 Chapter 1. Preface

Building Skills in Python, Release 2.6.5

1.5 Programming Style

We have to adopt a style for presenting Python. We won’t present a complete set of coding standards, instead
we’ll present examples. This section has some justification of the style we use for the examples in this book.

Just to continune this rant, we find that actual examples speak louder than any of the gratuitously detailed
coding standards which are so popular in IT shops. We find that many IT organizations waste considerable
time trying to write descriptions of a preferred style. A good example, however, trumps any description.
As consultants, we are often asked to provide standards to an inexperienced team of programmers. The
programmers only look at the examples (often cutting and pasting them). Why spend money on empty
verbiage that is peripheral to the useful example?

One important note: we specifically reject using complex prefixes for variable names. Prefixes are little more
than “visual clutter”. In many places, for example, an integer parameter with the amount of a bet might be
called pi_amount where the prefix indicates the scope (p for a parameter) and type (¢ for an integer). We
reject the ‘pi_’ as potentially misleading and therefore uninformative.

This style of name is only appropriate for primitive types, and doesn’t address complex data structures well
at all. How does one name a parameter that is a list of dictionaries of class instances? ‘pldc_’?

In some cases, prefixes are used to denote the scope of an instance variables. Variable names might include a
cryptic one-letter prefix like ‘£’ to denote an instance variable; sometimes programmers will use ‘my’ or ‘the’
as an English-like prefix. We prefer to reduce clutter. In Python, instance variables are always qualified by
self . making the scope crystal clear.

All of the code samples were tested on Python 2.6 for MacOS, using an iMac running MacOS 10.5. Ad-
ditional testing of all code was done with Windows 2000 on a Dell Latitude laptop as well as a VMWare
implementation of Fedora 11.

1.6 Conventions Used in This Book

Here is a typical Code sample.

Typical Python Example

combo = { }
for i in range(1,7):
for j in range(1,7):
roll= i+j
combo.setdefault(roll, 0)
combo [roll] += 1
for n in range(2,13):
print " "% (n, combo[n]/36.0)

1. This creates a Python dictionary, a map from key to value. If we initialize it with something like the
following: ‘combo = dict([(n,0) for n in range(2,13)])’, we don’t need the setdefault()
function call below.

2. This assures that the rolled number exists in the dictionary with a default frequency count of 0.

3. Print each member of the resulting dictionary. Something more obscure like ‘[(n,combo[n]/36.0)
for n in range(2,13)]’ is certainly possible.

The output from the above program will be shown as follows:

1.5. Programming Style 9

Building Skills in Python, Release 2.6.5

.03%
.06%
.08Y%
119
.14
179
.14,
119
10 0.08%
11 0.06%
12 0.03%
Tool completed successfully

© 00N O WN
O OO O OO oo

We will use the following type styles for references to a specific Class, method (), attribute, which includes
both class variables or instance variables.

Sidebars

When we do have a significant digression, it will appear in a sidebar, like this.

Tip: tip

There will be design tips, and warnings, in the material for each exercise. These reflect considerations and
lessons learned that aren’t typically clear to starting OO designers.

1.7 Acknowledgements

I’d like to thank Carl Frederick for asking me if I was using Python to develop complex applications. At the
time, I said I’d have to look into it. This is the result of that investigation.

I am indebted to Thomas Pautler, Jim Bullock, Michaél Van Dorpe, Matthew Curry, Igor Sakovich, Drew,
John Larsen, Robert Lucente, Lex Hider, John Nowlan and Tom Elliott for supplying much-needed correc-
tions to errors in previous editions.

John Hayes provided particular complete and meticulous copy-editing.

10 Chapter 1. Preface

Part 11

Language Basics

11

Building Skills in Python, Release 2.6.5

The Processing View

A programming language involves two closely interleaved topics. On one hand, there are the procedural
constructs that process information inside the computer, with visible effects on the various external devices.
On the other hand are the various types of data structures and relationships for organizing the information
manipulated by the program.

This part describes the most commonly-used Python statements, sticking with basic numeric data types.
Data Structures will present a reasonably complete set of built-in data types and features for Python. While
the two are tightly interwoven, we pick the statements as more fundamental because we can (and will) add
new data types. Indeed, the essential thrust of object-oriented programming (covered in Data + Processing
= Objects) is the creation of new data types.

Some of the examples in this part refer to the rules of various common casino games. Knowledge of casino
gambling is not essential to understanding the language or this part of the book. We don’t endorse casino
gambling. Indeed, many of the exercises reveal the magnitude of the house edge in most casino games.
However, casino games have just the right level of algorithmic complexity to make for excellent programming
exercises.

We'll provide a little background on Python in Background and History. From there, we’ll move on to
installing Python in Python Installation.

In Simple Numeric Expressions and Output we’ll introduce the print statement (and print () function); we’ll
use this to see the results of arithmetic expressions including the numeric data types, operators, conversions,
and some built-in functions. We’ll expand on this in Advanced Expressions.

We'll introduce variables, the assignment statement, and input in Variables, Assignment and Input, allowing
us to create simple input-process-output programs. When we add truth, comparisons, conditional processing
in Truth, Comparison and Conditional Processing, and iteration in Loops and Iterative Processing, we’ll have
all the tools necessary for programming. In Functions and Additional Notes On Functions, we’ll show how
to define and use functions, the first of many tools for organizing programs to make them understandable.

13

Building Skills in Python, Release 2.6.5

14

CHAPTER
TWO

BACKGROUND AND HISTORY

History of Python and Comparison with Other Languages

This chapter describes the history of Python in History. The Features of Python is an overview of the
features of Python. After that, Comparisons is a subjective comparison between Python and a few other
other languages, using some quality criteria harvested from two sources: the Java Language Environment
White Paper and On the Design of Programming Languages. This material can be skipped by newbies: it
doesn’t help explain Python, it puts it into a context among other programming languages.

2.1 History

Python is a relatively simple programming language that includes a rich set of supporting libraries. This
approach keeps the language simple and reliable, while providing specialized feature sets as separate exten-
sions.

Python has an easy-to-use syntax, focused on the programmer who must type in the program, read what
was typed, and provide formal documentation for the program. Many languages have syntax focused on
developing a simple, fast compiler; but those languages may sacrifice readability and writability. Python
strikes a good balance between fast compilation, readability and writability.

Python is implemented in C, and relies on the extensive, well understood, portable C libraries. It fits
seamlessly with Unix, Linux and POSIX environments. Since these standard C libraries are widely available
for the various MS-Windows variants, and other non-POSIX operating systems, Python runs similarly in all
environments.

The Python programming language was created in 1991 by Guido van Rossum based on lessons learned
doing language and operating system support. Python is built from concepts in the ABC language
and Modula-3. For information ABC, see The ABC Programmer’s Handbook [Geurts9l], as well as
http://www.cwinl/~steven/abc/. For information on Modula-3, see Modula-3 [Harbison92|, as well as
http://www.research.compaq.com/SRC/modula-3/html/home.html.

The current Python development is centralized at http://www.python.org.

2.2 Features of Python

Python reflects a number of growing trends in software development. It is a very simple language surrounded
by a vast library of add-on modules. It is an open source project, supported by dozens of individuals. It is an
object-oriented language. It is a platform-independent, scripted language, with complete access to operating

15

http://www.cwi.nl/~steven/abc/
http://www.research.compaq.com/SRC/modula-3/html/home.html
http://www.python.org

Building Skills in Python, Release 2.6.5

system API ‘s. It supports integration of complex solutions from pre-built components. It is a dynamic
language, allowing more run-time flexibility than statically compiled languages.

Additionally, Python is a scripting language with full access to Operating System (OS) services. Conse-
quently, Python can create high level solutions built up from other complete programs. This allows someone
to integrate applications seamlessly, creating high-powered, highly-focused meta-applications. This kind
of very-high-level programming (programming in the large) is often attempted with shell scripting tools.
However, the programming power in most shell script languages is severely limited. Python is a complete
programming language in its own right, allowing a powerful mixture of existing application programs and
unique processing to be combined.

Python includes the basic text manipulation facilities of Awk or Perl. It extends these with extensive OS
services and other useful packages. It also includes some additional data types and an easier-to-read syntax
than either of these languages.

Python has several layers of program organization. The Python package is the broadest organizational unit;
it is collection of modules. The Python module, analogous to the Java package, is the next level of grouping.
A module may have one or more classes and free functions. A class has a number of static (class-level)
variables, instance variables and methods. We’ll lookl at these layers in detail in appropriate sections.

Some languages (like COBOL) have features that are folded into the language itself, leading to a complicated
mixture of core features, optional extensions, operating-system features and special-purpose data structures
or algorithms. These poorly designed languages may have problems with portability. This complexity makes
these languages hard to learn. One hint that a language has too many features is that a language subset is
available. Python suffers from none of these defects: the language has only about 24 statements (of which
five are declaratory in nature), the compiler is simple and portable. This makes the the language is easy to
learn, with no need to create a simplified language subset.

2.3 Comparisons

We’ll measure Python with two yardsticks. First, we’ll look at a yardstick originally used for Java. Then
we’ll look at yardstick based on experience designing Modula-2.

2.3.1 The Java Yardstick

The Java Language Environment White Paper [Gosling96] lists a number of desirable features of a program-
ming language:

e Simple and Familiar
¢ Object-Oriented

e Secure

e Interpreted

e Dynamic

e Architecture Neutral
e Portable

e Robust

o Multithreaded

e Garbage Collection

o Exceptions

16 Chapter 2. Background and History

Building Skills in Python, Release 2.6.5

e High Performance

Python meets and exceeds most of these expectations. We'll look closely at each of these twelve desireable
attributes.

Simple and Familiar. By simple, we mean that there is no GOTO statement, we don’t need to explicitly
manage memory and pointers, there is no confusing preprocessor, we don’t have the aliasing problems
associated with unions. We note that this list summarizes the most confusing and bug-inducing features of
the C programming language.

Python is simple. It relies on a few core data structures and statements. The rich set of features is introduced
by explicit import of extension modules. Python lacks the problem-plagued GOTO statement, and includes
the more reliable break, continue and exception raise statements. Python conceals the mechanics of object
references from the programmer, making it impossible to corrupt a pointer. There is no language preprocessor
to obscure the syntax of the language. There is no C-style union (or COBOL-style REDEFINES) to create
problematic aliases for data in memory.

Python uses an English-like syntax, making it reasonably familiar to people who read and write English
or related languages. There are few syntax rules, and ordinary, obvious indentation is used to make the
structure of the software very clear.

Object-Oriented. Python is object oriented. Almost all language features are first class objects, and can be
used in a variety of contexts. This is distinct from Java and C++ which create confusion by having objects
as well as primitive data types that are not objects. The built-in type () function can interrogate the types of
all objects. The language permits creation of new object classes. It supports single and multiple inheritance.
Polymorphism is supported via run-time interpretation, leading to some additional implementation freedoms
not permitted in Java or C+-+.

Secure. The Python language environment is reasonably secure from tampering. Pre-compiled python
modules can be distributed to prevent altering the source code. Additional security checks can be added by
supplementing the built-in __import__() function.

Many security flaws are problems with operating systems or framework software (for example, database
servers or web servers). There is, however, one prominent language-related security problem: the “buffer
overflow” problem, where an input buffer, of finite size, is overwritten by input data which is larger than the
available buffer. Python doesn’t suffer from this problem.

Python is a dynamic language, and abuse of features like the exec statement or the eval() function can
introduce security problems. These mechanisms are easy to identify and audit in a large program.

Interpreted. An interpreted language, like Python allows for rapid, flexible, exploratory software de-
velopment. Compiled languages require a sometimes lengthy edit-compile-link-execute cycle. Interpreted
languages permit a simpler edit-execute cycle. Interpreted languages can support a complete debugging and
diagnostic environment. The Python interpreter can be run interactively; which can help with program
development and testing.

The Python interpreter can be extended with additional high-performance modules. Also, the Python inter-
preter can be embedded into another application to provide a handy scripting extension to that application.

Dynamic. Python executes dynamically. Python modules can be distributed as source; they are compiled
(if necessary) at import time. Object messages are interpreted, and problems are reported at run time,
allowing for flexible development of applications.

In C++, any change to centrally used class headers will lead to lengthy recompilation of dependent modules.
In Java, a change to the public interface of a class can invalidate a number of other modules, leading to
recompilation in the best case, or runtime errors in the worst case.

Portable. Since Python rests squarely on a portable C source, Python programs behave the same on a
variety of platforms. Subtle issues like memory management are completely hidden. Operating system

2.3. Comparisons 17

Building Skills in Python, Release 2.6.5

inconsistency makes it impossible to provide perfect portability of every feature. Portable GUI’s are built
using the widely-ported Tk GUI tools Tkinter, or the GTK+ tools and the the pyGTK bindings.

Robust. Programmers do not directly manipulate memory or pointers, making the language run-time
environment very robust. Errors are raised as exceptions, allowing programs to catch and handle a variety of
conditions. All Python language mistakes lead to simple, easy-to-interpret error messages from exceptions.

Multithreaded. The Python threading module is a Posix-compliant threading library. This is not com-
pletely supported on all platforms, but does provide the necessary interfaces. Beyond thread management,
OS process management is also available, as are execution of shell scripts and other programs from within a
Python program.

Additionally, many of the web frameworks include thread management. In products like TurboGears, indi-
vidual web requests implicitly spawn new threads.

Garbage Collection. Memory-management can be done with explicit deletes or automated garbage col-
lection. Since Python uses garbage collection, the programmer doesn’t have to worry about memory leaks
(failure to delete) or dangling references (deleting too early).

The Python run-time environment handles garbage collection of all Python objects. Reference counters are
used to assure that no live objects are removed. When objects go out of scope, they are eligible for garbage
collection.

Exceptions. Python has exceptions, and a sophisticated try statement that handles exceptions. Unlike
the standard C library where status codes are returned from some functions, invalid pointers returned from
others and a global error number variable used for determining error conditions, Python signals almost all
errors with an exception. Even common, generic OS services are wrapped so that exceptions are raised in a
uniform way.

High Performance. The Python interpreter is quite fast. However, where necessary, a class or module
that is a bottleneck can be rewritten in C or C++, creating an extension to the runtime environment that
improves performance.

2.3.2 The Modula-2 Yardstick

One of the languages which strongly influenced the design of Python was Modula-2. In 1974, N. Wirth
(creator of Pascal and its successor, Modula-2) wrote an article On the Design of Programming Languages
[Wirth74], which defined some timeless considerations in designing a programming language. He suggests
the following:

e a language be easy to learn and easy to use;

e safe from misinterpretation;

o extensible without changing existing features;

o machine [platform] independent;

« the compiler [interpreter] must be fast and compact;

o there must be ready access to system services, libraries and extensions written in other languages;
e the whole package must be portable.

Python syntax is designed for readability; the language is quite simple, making it easy to learn and use. The
Python community is always alert to ways to simplify Python. The Python 3.0 project is actively working
to remove a few poorly-concieved features of Python. This will mean that Python 3.0 will be simpler and
easier to use, but incompatible with Python 2.x in a few areas.

Most Python features are brought in via modules, assuring that extensions do not change or break existing
features. This allows tremendous flexibility and permits rapid growth in the language libraries.

18 Chapter 2. Background and History

Building Skills in Python, Release 2.6.5

The Python interpreter is very small. Typically, it is smaller than the Java Virtual Machine. Since Python
is (ultimately) written in C, it has the same kind of broad access to external libraries and extensions. Also,
this makes Python completely portable.

2.4 Some Jargon

For folks new to developing software, it might help to understand a few distinctions made above.
e Interperted
o Not Interpreted (i.e., Compiled)

Python is a byte-code interpreter. A Python code object is a sequence of bytes that represent various
operations and values. The Python interpreter steps through the bytes, performing the operations.

A compiled language (e.g., C, C++, etc.) is translated from source form to executable binary specific to
operating system and hardware platform.

Java is similar to Python: it’s compiled and the Java Virtual Machine is a byte-code interpreter.
e Dynamic
o Not Dynamic (i.e., Static)

Python is a dynamic language. Variables and functions do not have defined data types. Instead, a variable
is simply a label attached to an object. A function is a callable object with parameters, but no declared
result type. Each object has a strongly-defined permanent class.

There is no sophisticated compile-time type checking. Instead, any type mismatches will be detected at
run-time. Since many types are nearly interchangeable, there isn’t a need for a lot of type checking. For
examples of interchangeable (“polymorphic”) types, see Simple Numeric Expressions and Output.

Languages like C, C++ and Java have statically-declared variables and functions.
e Scripting
e Non-Scripting

The “scripting” distinction is an operational feature of POSIX-compliant operating systems. Files which
begin with the ‘#!/path/to/interpreter’ will be used as scripts by the OS. They can be executed from
the command-line because the interpreter is named in the first line of the file.

Languages like Java, C and C++ do not have this feature; these files must be compiled before they can be
executed.

2.4. Some Jargon 19

Building Skills in Python, Release 2.6.5

20

Chapter 2. Background and History

CHAPTER

THREE

PYTHON INSTALLATION

Downloading, Installing and Upgrading Python

This chapter is becoming less and less relevant as Python comes pre-installed with most Linux-based oper-
ating systems. Consequently, the most interesting part of this chapter is the Windows Installation, where
we describe downloading and installing Python on Windows.

Python runs on a wide, wide variety of platforms. If your particular operating system isn’t described here,
refer to http://www.python.org/community/ to locate an implementation.

Mac OS developers will find it simplest to upgrade to Leopard (Max OS 10.5) or Snow Leopard (Mac OS
10.6), since it has Python included. The Mac OS installation includes the complete suite of tools. We’ll look
at upgrading in Macintosh Installation.

For other GNU/Linux developers, you'll find that Python is generally included in most distributions. Further,
many Linux distributions automatically upgrade their Python installation. For example, Fedora Core 11
includes Python 2.6 and installs upgrades as they become available. You can find installation guidelines in
GNU/Linuz and UNIX Ouverview.

The Goal. The goal of installation is to get the Python interpreter and associated libraries. Windows users
will get a program called python.exe. Linux and MacOS users will get the Python interpreter, a program
named python.

In addition to the libraries and the interpreter, your Python installation comes with a tutorial document
(also available at http://docs.python.org/tutorial/) on Python that will step you through a number of quick
examples. For newbies, this provides an additional point of view that you may find helpful. You may also
want to refer to the Beginner’s Guide Wiki at http://wiki.python.org/moin/BeginnersGuide.

3.1 Windows Installation

In some circumstances, your Windows environment may require administrator privilege. The details are
beyond the scope of this book. If you can install software on your PC, then you have administrator privileges.
In a corporate or academic environment, someone else may be the administrator for your PC.

The Windows installation of Python has three broad steps.
1. Pre-installation: make backups and download the installation kit.
2. Installation: install Python.
3. Post-installation: check to be sure everything worked.

We'll go through each of these in detail.

21

http://www.python.org/community/
http://docs.python.org/tutorial/
http://wiki.python.org/moin/BeginnersGuide

Building Skills in Python, Release 2.6.5

3.1.1 Windows Pre-Installation

Backup. Before installing software, back up your computer. I strongly recommend that you get a tool like
Norton’s Ghost (http://www.symantec.com/norton/ghost) or clonezilla (http://clonezilla.org/).

Products like these will create a CD that you can use to reconstruct the operating system on your PC in
case something goes wrong. It is difficult to undo an installation in Windows, and get your computer back
the way it was before you started.

I’'ve never had a single problem installing Python. I've worked with a number of people, however, who
either have bad luck or don’t read carefully and have managed to corrupt their Windows installation by
downloading and installing software. While Python is safe, stable, reliable, virus-free, and well-respected,
you may be someone with bad luck who has a problem. Often the problem already existed on your PC and
installing Python was the straw that broke the camel’s back. A backup is cheap insurance.

You should also have a folder for saving your downloads. You can create a folder in My Documents called
downloads. I suggest that you keep all of your various downloaded tools and utilities in this folder for two
reasons. If you need to reinstall your software, you know exactly what you downloaded. When you get a
new computer (or an additional computer), you know what needs to be installed on that computer.

Download. After making a backup, go to the http://www.python.org web site and look for the Download
area. In here, you're looking for the pre-built Windows installer. This book will emphasize Python 2.6. In
that case, the kit will have a filename like python-2.6.x.msi. When you click on the filename, your browser
should start downloading the file. Save it in your downloads folder.

Backup. Now is a good time to make a second backup. Seriously. This backup will have your untouched
Windows system, plus the Python installation kit. It is still cheap insurance.

If you have anti-virus software [you do, don’t you?] you may need to disable this until you are done installing
Python.

At this point, you have everything you need to install Python:
e A backup
e The Python installer

3.1.2 Windows Installation

You’ll need two things to install Python. If you don’t have both, see the previous section on pre-installation.
e A backup
e The Python installer

Double-click the Python installer (python-2.6.x.msi).

The first step is to select a destination directory. The default destination should be C:\Python26 . Note
that Python does not expect to live in the C:\My Programs folder. Because the My Programs folder has a
space in the middle of the name — something that is atypical for all operating systems other than Windows —
subtle problems can arise. Consequently, Python folks prefer to put Python into C:\Python26 on Windows
machines. Click Next to continue.

If you have a previous installation, then the next step is to confirm that you want to backup replaced files.
The option to make backups is already selected and the folder is usually C:\Python26\BACKUP. This is the
way it should be. Click Next to continue.

The next step is the list of components to install. You have a list of five components.

e Python interpreter and libraries. You want this.

22 Chapter 3. Python Installation

http://www.symantec.com/norton/ghost
http://clonezilla.org/
http://www.python.org

Building Skills in Python, Release 2.6.5

o Tcl/Tk (Tkinter, IDLE, pydoc). You want this, so that you can use IDLE to build programs.
e Python HTML Help file. This is some reference material that you’ll probably want to have.

o Python utility scripts (Tools/). We won’t be making any use of this in this book. In the long run,
you’ll want it.

o Python test suite (Lib/test/). We won’t make any use of this, either. It won’t hurt anything if you
install it.

There is an Advanced Options... button that is necessary if you are using a company-supplied computer
for which you are not the administrator. If you are not the administrator, and you have permission to install
additional software, you can click on this button to get the Advanced Options panel. There’s a button
labeled Non-Admin install that you’ll need to click in order to install Python on a PC where you don’t
have administrator privileges.

Click Next to continue.

You can pick a Start Menu Group for the Python program, IDLE and the help files. Usually, it is placed
in a menu named Python 2.6. I can’t see any reason for changing this, since it only seems to make things
harder to find. Click Next to continue.

The installer puts files in the selected places. This takes less than a minute.
Click Finish ; you have just installed Python on your computer.
Tip: Debugging Windows Installation

The only problem you are likely to encounter doing a Windows installation is a lack of administrative
privileges on your computer. In this case, you will need help from your support department to either do the
installation for you, or give you administrative privileges.

3.1.3 Windows Post-Installation

In your Start... menu, under All Programs , you will now have a Python 2.6 group that lists five things:
o IDLE (Python GUI)
e Module Docs
o Python (command line)
o Python Manuals
e Uninstall Python
Important: Testing
If you select the Python (command line) menu item, you’ll see the ‘Python (command line)’ window.

This will contain something like the following.

Python 2.6.2 (r262:71605, Apr 14 2009, 22:40:02) [MSC v.1500 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more information.

>>> ~Z

If you hit Ctrl-Z and then Enter , Python will exit. The basic Python program works. You can skip to
Getting Started to start using Python.

If you select the Python Manuals menu item, this will open a Microsoft Help reader that will show the
complete Python documentation library.

3.1. Windows Installation 23

Building Skills in Python, Release 2.6.5

3.2 Macintosh Installation

Python is part of the MacOS environment. Tiger (Mac OS 10.4) includes Python 2.3.5 and IDLE. Leopard
(Mac OS 10.5) includes Python 2.5.1. Snow Leopard (Mac OS 10.6) includes Python 2.6.

Generally, you don’t need to do much to get started. You’ll just need to locate the various Python files.
Look in /System/Library/Frameworks/Python.Framework/Versions for the relevant files.

In order to upgrade software in the Macintosh OS, you must know the administrator, or “owner” password.
If you are the person who installed or initially setup the computer, you had to pick an owner password
during the installation. If someone else did the installation, you’ll need to get the password from them.

A Mac OS upgrade of Python has three broad steps.
1. Pre-upgrade: make backups and download the installation kit.
2. Installation: upgrade Python.
3. Post-installation: check to be sure everything worked.

We'll go through each of these in detail.

3.2.1 Macintosh Pre-Installation

Before installing software, back up your computer. While you can’t easily burn a DVD of everything on
your computer, you can usually burn a DVD of everything in your personal Mac OS X Home directory.

I’ve never had a single problem installing Python. I've worked with a number of people, however, who either
have bad luck or don’t read carefully and have managed to corrupt their Mac OS installation by downloading
and installing software. While Python is safe, stable, reliable, virus-free, and well-respected, you may be
someone with bad luck who has a problem. A backup is cheap insurance.

Download. After making a backup, go to the http://www.python.org web site and look for the Download
area. In here, you're looking for the pre-built Mac OS X installer. This book will emphasize Python 2.6. In
that case, the kit filename will start with python-2.6.2.macosx. Generally, the filename will have a date
embedded in it and look like python-2.6.2.macosx2009-04-16.dmg When you click on the filename, your
browser should start downloading the file. Save it in your Downloads folder.

Backup. Now is a good time to make a second backup. Seriously. It is still cheap insurance.
At this point, you have everything you need to install Python:

e A backup

e The Python installer

3.2.2 Macintosh Installation

When you double-click the python-2.6.2-macosx2009-04-16.dmg, it will create a disk image named
Universal MacPython 2.6.x . This disk image has your license, a ReadMe file, and the MacPython.mpkg.

When you double-click the MacPython .mpkg fie, it will take all the necessary steps to install Python on your
computer. The installer will take you through seven steps. Generally, youll read the messages and click
Continue.

Introduction. Read the message and click Continue.

Read Me. This is the contents of the ReadMe file on the installer disk image. Read the message and click
Continue.

24 Chapter 3. Python Installation

http://www.python.org

Building Skills in Python, Release 2.6.5

License. You can read the history of Python, and the terms and conditions for using it. To install Python,
you must agree with the license. When you click Continue , you will get a pop-up window that asks if you
agree. Click Agree to install Python.

Select Destination. Generally, your primary disk drive, usually named Macintosh HD will be highlighted
with a green arrow. Click Continue.

Installation Type. If you've done this before, you'll see that this will be an upgrade. If this is the first
time, you’ll be doing an install. Click the Install or Upgrade button.

You’ll be asked for your password. If, for some reason, you aren’t the administrator for this computer, you
won’t be able to install software. Otherwise, provide your password so that you can install software.

Finish Up. The message is usually “The software was successfully installed”. Click Close to finish.

3.2.3 Macintosh Post-Installation

In your Applications folder, you’ll find a MacPython 2.6 folder, which contains a number of applications.
o BuildApplet
o Extras
« IDLE
e PythonLauncher
o Update Shell Profile.command

Look in /System/Library/Frameworks/Python.Framework/Versions for the relevant files. In the bin ,
Extras and Resources directories you'll find the various applications. The bin/idle file will launch IDLE
for us.

Once you've finished installation, you should check to be sure that everything is working correctly.
Important: Testing

From the terminal you can enter the python command.

You should see the following

MacBook-5:~ slott$ python

Python 2.6.3 (r263:75184, Oct 2 2009, 07:56:03)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Enter end-of-file ctrl-D to exit from Python.

3.3 GNU/Linux and UNIX Overview

In Checking for Python we’ll provide a procedure for examining your current configuration to see if you have
Python in the first place. If you have Python, and it’s version 2.6, you're all done. Otherwise, you’ll have
to determine what tools you have for doing an installation or upgrade.

o If you have Yellowdog Updater Modified (YUM) see YUM Installation.

« If you have one of the GNU/Linux variants that uses the Red Hat Package Manager (RPM), see RPM
Installation.

3.3. GNU/Linux and UNIX Overview 25

Building Skills in Python, Release 2.6.5

e The alternative to use the source installation procedure in “Build from Scratch” Installation.

Root Access. In order to install software in GNU /Linux, you must know the administrator, or “root”
password. If you are the person who installed the GNU/Linux, you had to pick an administrator password
during the installation. If someone else did the installation, you’ll need to get the password from them.

Normally, we never log in to GNU/Linux as root except when we are installing software. In this case,
because we are going to be installing software, we need to log in as root, using the administrative password.

If you are a GNU/Linux newbie and are in the habit of logging in as root, you're going to have to get a
good GNU/Linux book, create another username for yourself, and start using a proper username, not root.
When you work as root, you run a terrible risk of damaging or corrupting something. When you are logged
on as anyone other than root, you will find that you can’t delete or alter important files.

Unix is not Linux. For non-Linux commercial Unix installations (Solaris, AIX, HP/UX, etc.), check
with your vendor (Oracle/Sun, IBM, HP, etc.) It is very likely that they have an extensive collection of open
source projects like Python pre-built for your UNIX variant. Getting a pre-built kit from your operating
system vendor is an easy way to install Python.

3.3.1 Checking for Python

Many GNU/Linux and Unix systems have Python installed. On some older Linuxes [Linuzi? Lini? Linen?]
there may be an older version of Python that needs to be upgraded. Here’s what you do to find out whether
or not you already have Python.

We can’t easily cover all variations. We’ll use Fedora as a typical Linux distribution.

Run the Terminal tool. You’ll get a window which prompts you by showing something like ‘[slott@linux01
slott]$’ . In response to this prompt, enter ‘env python’, and see what happens.

Here’s what happens when Python is not installed.

[slott@linux01 slott]$ env python
tcsh: python: not found

Here’s what you see when there is a properly installed, but out-of-date Python on your GNU/Linux box.

[slott@linux01 slott]$ env python

Python 2.3.5 (#1, Mar 20 2005, 20:38:20)

[GCC 3.3 20030304 (Apple Computer, Inc. build 1809)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.

>>> 7D

We used an ordinary end-of-file (Control-D) to exit from Python.

In this case, the version number is 2.3.5, which is good, but we need to install an upgrade.

3.3.2 YUM Installation
If you are a Red Hat or Fedora user, you likely have a program named Yum. If you don’t have Yum, you
should upgrade to Fedora Core 11.

Note that Yum repositories do not cover every combination of operating system and Python distribution. In
these cases, you should consider an operating system upgrade in order to introduce a new Python distribution.

If you have an out-of-date Python, you’ll have to enter two commands in the Terminal window.

26 Chapter 3. Python Installation

Building Skills in Python, Release 2.6.5

yum upgrade python
yum install tkinter

The first command will upgrade the Python 2.6 distribution. You can use the command ” ‘install’ ”
instead of ” ‘upgrade’ ” in the unlikely event that you somehow have Yum, but don’t have Python.

The second command will assure that the extension package named tkinter is part of your Fedora instal-
lation. It is not, typically, provided automatically. You’ll need this to make use of the IDLE program used
extensively in later chapters.

In some cases, you will also want a packaged called the “Python Development Tools”. This includes some
parts that are used by Python add-on packages.

3.3.3 RPM Installation

Many variants of GNU/Linux use the Red Hat Package Manager (RPM). The rpm tool automates the
installation of software and the important dependencies among software components. If you don’t know
whether on not your GNU/Linux uses the Red Hat Package manager, you'll have to find a GNU/Linux
expert to help you make that determination.

Red Hat Linux (and the related Fedora Core distributions) have a version of Python pre-installed. Sometimes,
the pre-installed Python is an older release and needs an upgrade.

This book will focus on Fedora Core GNU/Linux because that’s what I have running. Specifically, Fedora
Core 8. You may have a different GNU /Linux, in which case, this procedure is close, but may not be precisely
what you’ll have to do.

The Red Hat and Fedora GNU/Linux installation of Python has three broad steps.
1. Pre-installation: make backups.
2. Installation: install Python. We’ll focus on the simplest kind of installation.
3. Post-installation: check to be sure everything worked.

We'll go through each of these in detail.

3.3.4 RPM Pre-Installation

Before installing software, back up your computer.

You should also have a directory for saving your downloads. I recommend that you create a /opt directory
for these kinds of options which are above and beyond the basic Linx installation. You can keep all of your
various downloaded tools and utilities in this directory for two reasons. If you need to reinstall your software,
you know exactly what you downloaded. When you get a new computer (or an additional computer), you
know what needs to be installed on that computer.

3.3.5 RPM Installation

A typical scenario for installing Python is a command like the following. This has specific file names for
Fedora Core 9. You'll need to locate appropriate RPM’s for your distribution of Linux.

rpm -i http://download.fedora.redhat.com/pub/fedora/linux/development\
/1386/0s/Packages/python-2.5.1-18.£c9.1386.rpm

3.3. GNU/Linux and UNIX Overview 27

Building Skills in Python, Release 2.6.5

Often, that’s all there is to it. In some cases, you’ll get warnings about the DSA signature. These are
expected, since we didn’t tell RPM the public key that was used to sign the packages.

3.3.6 RPM Post-Installation

Important: Testing

Run the Terminal tool. At the command line prompt, enter ‘env python’, and see what happens.
[slott@localhost trunk]$ env python

Python 2.6 (r26:66714, Jun 8 2009, 16:07:26)

[GCC 4.4.0 20090506 (Red Hat 4.4.0-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

If you hit Ctrl-D (the GNU/Linux end-of-file character), Python will exit. The basic Python program works.

3.4 “Build from Scratch” Installation

There are many GNU/Linux variants, and we can’t even begin to cover each variant. You can use a similar
installation on Windows or the Mac OS; if you have the GCC compiler installed. Here’s an overview of how
to install using a largely manual sequence of steps.

1. Pre-Installation. Make backups and download the source kit. You're looking for the a file named
python-2.5.x.tgz.

2. Installation. The installation involves a fairly common set of commands. If you are an experienced
system administrator, but a novice programmer, you may recognize these.

Change to the /opt/python directory with the following command.
cd /opt/python

Unpack the archive file with the following command.

tar -zxvf Python-2.6.x.tgz

Do the following four commands to configure the installation scripts and make the Python package.
and then install Python on your computer.

cd Python-2.6
./configure
make

As root, you’ll need to do the following command. Either use sudo or su to temporarily elevate your
privileges.

make install

3. Post-installation. Check to be sure everything worked.
Important: Testing

Run the Terminal tool. At the command line prompt, enter ‘env python’, and see what happens.

28 Chapter 3. Python Installation

Building Skills in Python, Release 2.6.5

[slott@localhost trunk]$ env python

Python 2.6 (r26:66714, Jun 8 2009, 16:07:26)

[GCC 4.4.0 20090506 (Red Hat 4.4.0-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>
If you hit Ctrl-D (the GNU/Linux end-of-file character), Python will exit. The basic Python program
works.

Tip: Debugging Other Unix Installation

The most likely problem you’ll encounter in doing a generic installation is not having the appropriate GNU
GCC compiler. In this case, you will see error messages from configure which identifies the list of missing
packages. Installing the GNU GCC can become a complex undertaking.

3.4. “Build from Scratch” Installation 29

Building Skills in Python, Release 2.6.5

30

Chapter 3. Python Installation

CHAPTER
FOUR

GETTING STARTED

Interacting with Python

Python is an interpreted, dynamic language. The Python interpreter can be used in two modes: interactive
and scripted. In interactive mode, Python responds to each statement while we type. In script mode, we
give Python a file of statements and turn it loose to interpret all of the statements in that script. Both
modes produce identical results. When we’re producing a finished application program, we set it up to run
as a script. When we’re experimenting or exploring, however, we may use Python interactively.

We'll describe the interactive command-line mode for entering simple Python statements in Command-Line
Interaction. In The IDLE Development Environment we’ll cover the basics of interactive Python in the IDLE
environment. We’ll describes the script mode for running Python program files in Script Mode.

We'll look at the help fiunction in Getting Help.

Once we've started interacting with Python, we can address some syntax issues in Syntaz Formalities. We’ll
mention some other development tools in Other Tools. We’ll also address some “style” issues in Style Notes:
Wise Choice of File Names.

4.1 Command-Line Interaction

We'll look at interaction on the command line first, because it is the simplest way to interact with Python.
It parallels scripted execution, and helps us visualize how Python application programs work. This is the
heart of IDLE as well as the foundation for any application programs we build.

This is not the only way — or even the most popular way — to run Python. It is, however, the simplest and
serves as a good place to start.

4.1.1 Starting and Stopping Command-Line Python
Starting and stopping Python varies with your operating system. Generally, all of the variations are nearly
identical, and differ only in minor details.
Windows. There are two ways to start interactive Python under Windows.
1. You can run the command tool (cmd.exe) and enter the python command.

2. You can run the Python (Command Line) program under the Python2.6 menu item on the Start
menu.

31

Building Skills in Python, Release 2.6.5

To exit from Python, enter the end-of-file character sequence, Control-Z and Return.

Mac OS, GNU/Linux and Unix. You will run the Terminal tool. You can enter the command python
to start interactive Python.

To exit from Python, enter the end-of-file character, Control-D.

4.1.2 Entering Python Statements

When we run the Python interpreter (called python , or Python.exe in Windows), we see a greeting like
the following:

[slott@localhost trunk]$ env python

Python 2.6 (r26:66714, Jun 8 2009, 16:07:26)

[GCC 4.4.0 20090506 (Red Hat 4.4.0-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

When we get the >>> prompt, the Python interpreter is looking for input. We can type any Python statements
we want.

Each complete statement is executed when it is entered.

In this section only, we’ll emphasize the prompts from Python. This can help newbies see the complete cycle
of interaction between themselves and the Python interpreter. In the long run we’ll be writing scripts and
won’t emphasize this level of interaction.

We'll only cover a few key rules. The rest of the rules are in Syntax Formalities.

Rule 1. The essential rule of Python syntax is that a statement must be complete on a single line. There
are some exceptions, which we’ll get to below.

>>> 2 + 3
5

This shows Python doing simple integer arithmetic. When you entered 2 + 3 and then hit Return, the
Python interpreter evaluated this statement. Since the statement was only an expression, Python printed
the results.

We'll dig into to the various kinds of numbers in Simple Numeric Ezpressions and QOutput. For now, it’s
enough to know that you have integers and floating-point numbers that look much like other programming
languages. As a side note, integers have two slightly different flavors — fast (but small) and long (but slow).
Python prefers to use the fast integers (called int) until your numbers get so huge that it has to switch to
long.

Arithmetic operators include the usual culprits: ‘+ | ‘=" | ') /7 %’ and ‘**’ standing for addition,
subtraction, multiplication, division, modulo (remainder after division) and raising to a power. The usual
mathematical rules of operator precedence (multiplys and divides done before adds and subtracts) are in full
force, and ‘C’ and ‘)’ are used to group terms against precedence rules.

For example, converting 65 °Fahrenheit to Celsius is done as follows:

>>> (65 - 32) * 5/ 9
18

>>> (65.-32)*5/9
18.333333333333332
>>>

32 Chapter 4. Getting Started

Building Skills in Python, Release 2.6.5

Note that the first example used all integer values, and the result was an integer result. In the second
example, the presence of a float caused all the values to be coerced to float.

Also note that Python has the standard “binary-to-decimal” precision issue. The actual value computed does
not have a precise binary representation, and the default display of the decimal equivalent looks strange.
We'll return to this in Numeric Types and Operators.

Incomplete Statements. What happens when an expression statement is obviously incomplete?

>>> (65 -32) x5/
File "<stdin>", line 1
(65 -32) x5/

SyntaxError: invalid syntax

Parenthensis. There is an escape clause in the basic rule of “one statement one line”. When the parenthesis
are incomplete, Python will allow the statement to run on to multiple lines.

Python will change the prompt to ... to show that the statement is incomplete, and more is expected.

>>> (65 - 32
.)*5 /9
18

Rule 5. It is also possible to continue a long statement using a ‘\’ escape at the end of the line.

>>> 5 + 6 *\

el 7

a7

This escape allows you to break up an extremely long statement for easy reading.

Indentation. Python relies heavily on indendentation to make a program readable. When interacting with
Python, we are often typing simple expression statements, which are not indented. Later, when we start
typing compound statements, indentation will begin to matter.

Here’s what happens if we try to indent a simple expression statement.

>>> 5+6
SyntaxError: invalid syntax

Note that some statements are called compound statements — they contain an indented suite of statements.
Python will change the prompt to ... and wait until the entire compound statement is entered before it
does does the evaluation.

We’ll return to these when it’s appropriate in Truth, Comparison and Conditional Processing.

History. When we type an expression statement, Python evaluates it and displays the result. When we
type all other kinds of statements, Python executes it silently. We’ll see more of this, starting in Variables,
Assignment and Input.

Small mistakes can be frustrating when typing a long or complex statement. Python has a reasonable
command history capability, so you can use the up-arrow key to recover a previous statement. Generally,
you’ll prefer to create script files and run the scripts. When debugging a problem, however, interactive mode
can be handy for experimenting.

One of the desirable features of well-written Python is that most things can be tested and demonstrated in
small code fragments. Often a single line of easy-to-enter code is the desired style for interesting programming

4.1. Command-Line Interaction 33

Building Skills in Python, Release 2.6.5

features. Many examples in reference manuals and unit test scripts are simply captures of interactive Python
sessions.

4.2 The IDLE Development Environment

There are a number of possible integrated development environments (IDE) for Python. Python includes
the IDLE tool, which we’ll emphasize. Additionally, you can download or purchase a number of IDE’s that
support Python. In Other Tools we’ll look at other development tools.

Starting and stopping IDLE varies with your operating system. Generally, all of the variations are nearly
identical, and differ only in minor details.

4.2.1 IDLE On Windows

There are several ways to start IDLE in Windows.
1. You can use IDLE (Python GUI) from the Python2.6 menu on the Start menu.

2. You can also run IDLE from the command prompt. This requires two configuration settings in
Windows.

o Assure that C:Python26\Lib\idlelib on your system PATH. This directory contains IDLE.BAT

e Assure that .pyw files are associated with C:\Python26\pythonw.exe. In order to suppress
creation of a console window for a GUI application, Windows offers pythonw. exe.

You can quit IDLE by using the Quit menu item under the File menu.

4.2.2 IDLE On Mac OS X

In the Mac OS, if you’ve done an upgrade, you may find the IDLE program in the Python 2.6 folder in
your Applications folder. You can double-click this icon to run IDLE.

If you have the baseline application, youll have to find IDLE in the directory
/System/Library/Frameworks/Python. framework/Versions/Current/bin. Generally, this is direc-
tory part of your PATH setting, and you can type the command idle & in a Terminal window to start
IDLE.

When you run IDLE by double-clicking the idle icon, you’'ll notice that two windows are opened: a Python
Shell window and a Console window. The Console window isn’t used for much.

When you run IDLE from the Terminal window, no console window is opened. The Terminal window is
the Python console.

You can quit IDLE by using the Quit menu item under the File menu. You can also quit by using the
Quit Idle menu item under the Idle menu.

Since the Macintosh keyboard has a command key, O ; as well as a control key, ctrl, there are two keyboard
mappings for IDLE. You can use the Configure IDLE... item under the Options menu to select any of
the built-in Key Sets. Selecting the IDLE Classic Mac settings may be more comfortable for Mac OS
users.

34 Chapter 4. Getting Started

Building Skills in Python, Release 2.6.5

4.2.3 IDLE on GNU/Linux

We'll avoid the GNOME and KDE subtleties. Instead, we’ll focus on running IDLE from the Terminal
tool. Since the file path is rather long, you'll want to edit your .profile (or .bash_profile) to include
the following alias definition.

alias idle='env python /usr/lib/python2.5/idlelib/idle.py &'

This allows you to run IDLE by entering the command idle in a Terminal window.

You can quit IDLE by using the Exit menu item under the File menu.

4.2.4 Basic IDLE Operations

Initially, you’ll see the following greeting from IDLE.

Python 2.6.3 (r263:75184, Oct 2 2009, 07:56:03)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "copyright", "credits" or "license()" for more information.

sk ke ok sk s e ok sk sk ke ok sk s e ok sk sk sk sk s sk sk s sk sk s sk s e sk s e ok sk s e ok sk s e ok sk sk ke sk sk s ek sk sk sk sk s ok k
Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external
interface and no data is sent to or received from the Internet.
stk ok stk ok stk ok stk ok skok s kol sk skl stk sk ok stk sk ok stk sk ok stk sk ok stk sk ok skok s ksl sk e okskok e kok sk ok

IDLE 2.6.3
>>>

You may notice a Help menu. This has the Python Docs menu item, which you can access through the
menu or by hitting F1. This will launch Safari to show you the Python documents available on the Internet.

The personal firewall notification is a reminder that IDLE uses Internetworking Protocols (IP) as part of its
debugger. If you have a software firewall on you development computer, and the firewall software complains,
you can allow the connection.

IDLE has a simple and relatively standard text editor, which does Python syntax highlighting. It also has a
Python Shell window which manages an interactive Python session. You will see that the Python Shell
window has a Shell and a Debug menu.

When you use the New menu item in the File menu, you'll see a file window, which has a slightly different
menu bar. A file window has name which is a file name (or untitled), and two unique menus, a Run and a
Format menu.

Generally, you’ll use IDLE in two ways:
e You'll enter Python statements in the Python Shell window.

e You'll create files, and run those module files using the Run Module item in the Run menu. This
option is usually F5.

4.2.5 The Shell Window

The Python Shell window in IDLE presents a >>> prompt. At this prompt, you can enter Python
expressions or statements for evaluation. This window has a complete command history, so you can use the
up arrow to select a previous statement and make changes.

4.2. The IDLE Development Environment 35

Building Skills in Python, Release 2.6.5

You can refer back to Command-Line Interaction ; those interactions will look and behave the same in IDLE
as they do on the command line.

The Shell Window is essentially the command-line interface wrapped in a scrolling window. The IDLE in-
terface, however, provides a consistent working environment, which is independent of each operating system’s
command-line interface.

The Shell and Debug menus provides functions you’ll use when developing larger programs. For our first
steps with Python, we won’t need either of these menus. We’ll talk briefly about the functions, but can’t
really make use of them until we’ve learned more of the language.

The Shell Menu. The Shell menu is used to restart the Python interpreter, or scroll back through the
shell’s log to locate the most recent restart. This is important when you are developing a module that is
used as a library. When you change that module, you need to reset the shell so that the previous version is
forgotten and the new version can be imported into a fresh, empty interpreter.

Generally, being able to work interactively is the best way to develop working programs. It encourages you
to create tidy, simple-looking components which you can exercise directly.

The Debug Menu. The Debug menu provides some handy tools for watching how Python executes a
program.

o The Go to File/Line item is used to locate the source file where an exception was raised. You click
on the exception message which contains the file name and select the Go to File/Line menu item,
and IDLE will open the file and highlight the selected line.

e The Debugger item opens an interactive debugger window that allows you to step through the exe-
cuting Python program.

e The Stack Viewer item opens a window that displays the current Python stack. This shows the
arguments and working variables in the Python interpereter. The stack is organized into local and
global namespaces, a conceot we need to delve into in Variables, Assignment and Input.

e The Auto-open Stack Viewer option will open the Stack Viewer automatically when a program
raises an unhandled exception. How exceptions are raised and handled is a concept we’ll delve into in
Exceptions.

4.2.6 The File Windows

Each file window in IDLE is a simple text editor with two additional menus. The Format menu has a
series of items for fairly common source text manipulations. The formatting operations include indenting,
commenting, handling tabs and formatting text paragraphs.

The Run menu makes it easy to execute the file you are editing.
e The Python Shell menu item brings up the Python Shell window.

e The Check Module item checks the syntax for your file. If there are any errors, IDLE will highlight
the offending line so you can make changes. Additionally, this option will check for inconsistent use of
tabs and spaces for indentation.

¢ The Run Module , F5 , runs the entire file. You’ll see the output in the Python Shell window.

4.3 Script Mode

In interactive mode, Python displays the results of expressions. In script mode, however, Python doesn’t
automatically display results.

36 Chapter 4. Getting Started

Building Skills in Python, Release 2.6.5

In order to see output from a Python script, we’ll introduce the print statement and the print () function.
The print statement is the Python 2.6 legacy construct.

The print () function is a new Python 3 construct that will replace the print statement. We’ll visit this
topic in depth in Seeing Output with the print() Function (or print Statement).

For now, you can use either one. We’ll show both. In the future, the print statement will be removed from
the language.

4.3.1 The print Statement

The print statement takes a list of values and prints their string representation on the standard output file.
The standard output is typically directed to the Terminal window.

print "PI = ", 355.0/113.0

We can have the Python interpreter execute our script files. Application program scripts can be of any size
or complexity. For the following examples, we’ll create a simple, two-line script, called examplel.py.

examplel.py

print 65, "F"
print (65 - 32) * 5 / 9, "C"

4.3.2 The print() function

The print () functions takes a list of values and prints their string representation on the standard output
file. The standard output is typically directed to the Terminal window.

Until Python 3, we have to request the print() function with a special introductory statement: ‘from
__future__ import print_function’

from __future__ import print_function
print("PI = ", 355.0/113.0)

We can have the Python interpreter execute our script files. Application program scripts can be of any size
or complexity. For the following examples, we’ll create a simple, two-line script, called examplel.py.

examplel.py

from __future__ import print_function
print(65, "F")
print((65 - 32) *5 / 9, "C")

4.3.3 Running a Script

There are several ways we can start the Python interpreter and have it evaluate our script file.

4.3. Script Mode 37

Building Skills in Python, Release 2.6.5

o Explicitly from the command line. In this case we’ll be running Python and providing the name of the
script as an argument.

‘We'll look at this in detail below.

o Implicitly from the command line. In this case, we’ll either use the GNU /Linux shell comment (sharp-
bang marker) or we’ll depend on the file association in Windows.

This is slightly more complex, and we’ll look at this in detail below.

e Manually from within IDLE . It’s important for newbies to remember that IDLE shouldn’t be part
of the final delivery of a working application. However, this is a great way to start development of an
application program.

We won’t look at this in detail because it’s so easy. Hit F5. MacBook users may have to hit fn and
F5.

Running Python scripts from the command-line applies to all operating systems. It is the core of delivering
final applications. We may add an icon for launching the application, but under the hood, an application
program is essentially a command-line start of the Python interpreter.

4.3.4 Explicit Command Line Execution

The simplest way to execute a script is to provide the script file name as a parameter to the python
interpreter. In this style, we explicitly name both the interpreter and the input script. Here’s an example.

python examplel.py

This will provide the examplel.py file to the Python interpreter for execution.

4.3.5 Implicit Command-Line Execution

We can streamline the command that starts our application. For POSIX-standard operating systems
(GNU/Linux, UNIX and MacOS), we make the script file itself executable and directing the shell to lo-
cate the Python interpreter for us. For Windows users, we associate our script file with the python.exe
interpreter. There are one or two steps to this.

1. Associate your file with the Python interpreter. Except for Windows, you make sure the first line is
the following: ‘#!/usr/bin/env python’ . For Windows, you must assure that .py files are associated
with python.exe and .pyw files are associated with pythonw.exe.

The whole file will look like this:
#1/usr/bin/env python

print 65, "F"
print (65 - 32) x5/ 9, "C"

2. For POSIX-standard operating systems, do a chmod +x examplel.py to make the file example!.py
executable. You only do this once, typically the first time you try to run the file. For Windows, you
don’t need to do this.

Now you can run a script in most GNU/Linux environments by saying:

./examplel.py

38 Chapter 4. Getting Started

Building Skills in Python, Release 2.6.5

4.3.6 Windows Configuration

Windows users will need to be sure that python.exe is on their PATH. This is done with the System
control panel. Click on the Advanced tab. Click on the Environment Variables... button. Click on the
System variables Path line, and click the Edit... button. This will often have a long list of items, sometimes
starting with ‘/;SystemRoot?’. At the end of this list, add ‘";"’ and the direction location of Python.exe.
On my machine, I put it in C:\Python26.

For Windows programmers, the windows command interpreter uses the last letters of the file name to
associate a file with an interpreter. You can have Windows run the python.exe program whenever you
double-click a .py file. This is done with the Folder Options control panel. The File Types tab allows
you to pair a file type with a program that processes the file.

4.3.7 GNU/Linux Configuration

We have to be sure that the Python interpreter is in value of the PATH that our shell uses. We can’t
delve into the details of each of the available UNIX Shells. However, the general rule is that the person who
administers your POSIX computer should have installed Python and updated the /etc/profile to make
Python available to all users. If, for some reason that didn’t get done, you can update your own .profile
to add Python to your PATH variable.

The Sharp-Bang (“shebang”) Comment
The ‘#!” technique depends on the way all of the POSIX shells handle scripting languages. When you

enter a command that is the name of a file, the shell must first check the file for the “x” (execute)
mode; this was the mode you added with chmod +x.

When execute mode is true, the shell must then check the first few bytes to see what kind of file it is.
The first few bytes are termed the magic number; deep in the bowels of GNU/Linux there is a database
that shows what the magic number means, and how to work with the various kinds of files. Some files
are binary executables, and the operating system handles these directly.

When an executable file’s content begins with ‘#!’ it is a script file. The rest of the first line names
the program that will interpret the script. In this case, we asked the env program to find the python
interpreter. The shell finds the named program and runs it automatically, passing the name of script
file as the last argument to the interpreter it found.

The very cool part of this trick is that ‘#!” is a comment to Python. This first line is, in effect, directed
at the shell, and ignored by Python. The shell glances at it to see what the language is, and Python
studiously ignores it, since it was intended for the shell.

4.3.8 Another Script Example
Throughout the rest of this book, we’re going to use this script processing mode as the standard way to run
Python programs. Many of the examples will be shown as though a file was sent to the interpreter.

For debugging and testing, it is sometimes useful to import the program definitions, and do some manipu-
lations interactively. We’ll touch on this in Hacking Mode.

Here’s a second example. We’ll create a new file and write another small Python program. We’ll call it
example2.py.

4.3. Script Mode 39

Building Skills in Python, Release 2.6.5

example2.py

#!/usr/bin/env python
""Compute the odds of spinning red (or black) siz times in a Tow

mwmn

on an Amertican roulette wheel.
print (18.0/38.0)*%6

This is a one-line Python program with a two line module document string. That’s a good ratio to strive
for.

After we finish editing, we mark this as executable using ‘chmod +x example2.py’ Since this is a property
of the file, this remains true no matter how many times we edit, copy or rename the file.

When we run this, we see the following.

$./example2.py
0.0112962280375

Which says that spinning six reds in a row is about a one in eighty-nine probability.

4.4 Getting Help

Python has two closely-related help modes. One is the general “help” utility, the other is a help function
that provides the documentation on a specific object, module, function or class.

4.4.1 The help() Utility

Help is available through the help() function.

If you enter just ‘help()’ you will enter the online help utility. This help utility allows you to explore the
Python documentation.

The interaction looks like this:

>>> help
Type help() for interactive help, or help(object) for help about object.
>>> help()

Welcome to Python 2.5! This is the online help utility.

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://www.python.org/doc/tut/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",

"keywords", or "topics". Each module also comes with a one-line summary

of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help>

40 Chapter 4. Getting Started

Building Skills in Python, Release 2.6.5

Note that the prompt changes from Python’s standard ‘>>>’ to a special help-mode prompt of ‘help>’.
When you enter ‘quit’, you exit the help system and go back to Python’s ordinary prompt.

To start, enter :samp:’'modules’, :samp:’keywords’ or :samp:’topics’ to see the variety of information available.

4.4.2 Help on a specific topic
If you enter ‘help(object)’ for some object, you will be given help on that specific object. This help is
displayed using a “help viewer”.

You’ll enter something like this:
>>> help("EXPRESSTONS")

You'll get a page of output, ending with a special prompt from the program that’s helping to display the
help messages. The prompt varies: Mac OS and GNU/Linux will show one prompt, Windows will show
another.

Mac OS and GNU/Linux. In standard OS’s, you're interacting with a program named less; it will
prompt you with : for all but the last page of your document. For the last page it will prompt you with
(END).

This program is very sophisticated. The four most important commands you need to know are the following.
q Quit the less help viewer.
h Get help on all the commands which are available.
_Enter a space to see the next page.
b Go back one page.

Windows. In Windows, you’re interacting with a program named more; it will prompt you with -- More
--. The four important commands you’ll need to know are the following.

q Quit the more help viewer.
h Get help on all the commands which are available.

_Enter a space to see the next page.

4.5 Syntax Formalities

What is a Statement?

Informally, we’ve seen that simple Python statements must be complete on a single line. As we will see in
following chapters, compound statements are built from simple and compound statements.

Fundamentally, Python has a simple equivalence between the lexical line structure and the statements in a
Python program. This forces us to write readable programs with one statement per line. There are nine
formal rules for the lexical structure of Python.

1. Simple statements must be complete on a single Logical Line. Starting in Truth, Comparison and
Conditional Processing we’ll look at compound statements, which have indented suites of statements,
and which span multiple Logical Lines. The rest of these rules will define how Logical Lines are built
from Physical Lines through a few Line Joining rules.

4.5. Syntax Formalities 41

Building Skills in Python, Release 2.6.5

. Physical Lines are defined by the platform; they’ll end in standard ‘n’ or the Windows ASCII ‘CR’ ‘LF’

sequence (‘\r\n’).

. Comments start with the ‘#’ character outside a quoted string; comments end at the end of the physical

line. These are not part of a statement; they may occur on a line by themselves or at the end of a
statement.

. Coding-Scheme Comments. Special comments that are by VIM or EMACS can be included in the first

or second line of a Python file. For example, ‘# -*- coding: latinl -x-’

. Explicit Line Joining. A ‘\’ at the end of a physical line joins it to the next physical line to make

a logical line. This escapes the usual meaning of the line end sequence. The two or three-character
sequences (‘\n’ or ‘\r\n’) are treated as a single space.

. Implicit Line Joining. Expressions with ‘() ‘s, ‘[1’‘s or ‘{}’‘s can be split into multiple physical lines.

. Blank Lines. When entering statements interactively, an extra blank line is treated as the end of an

indented block in a compound statement. Otherwise, blank lines have no signficance.

. Indentation. The embedded suite of statements in a compound statement must be indented by a

consistent number of spaces or tabs. When entering statements interactively or in an editor that knows
Python syntax (like IDLE), the indentation will happen automatically; you will outdent by typing a
single backspace. When using another text editor, you will be most successful if you configure your
editor to use four spaces in place of a tab. This gives your programs a consisent look and makes them
portable among a wide variety of editors.

. Whitespace at the beginning of a line is part of indentation, and is significant. Whitespace elsewhere

within a line is not significant. Feel free to space things out so that they read more like English and
less like computer-ese.

4.6 Exercises

4.6.1 Command-Line Exercises

1. Simple Commands. Enter the following one-line commands to Python:

e copyright
o license
o credits

e help

2. Simple Expressions. Enter one-line commands to Python to compute the following:

o 12345 + 23456
« 98765 - 12345
. 128 * 256

¢ 22/7

. 355/ 113

. (18-32)%5/9

. -10%9/5+32

42

Chapter 4. Getting Started

Building Skills in Python, Release 2.6.5

4.6.2 IDLE Exercises

1. Create an Exercises Directory. Create a directory (or folder) for keeping your various exercise
scripts. Be sure it is not in the same directory in which you installed Python.

2. Use IDLE’s Shell Window. Start IDLE . Refer back to the exercises in Command-Line Interaction
. Run these exercises using IDLE .

3. Use the IDLE File Window. Start IDLE . Note the version number. Use New Window under
the File menu to create a simple file. The file should have the following content.

nmn My F'L""St lee nmnn
print __doc__
Save this file in your exercises directory; be sure the name ends with .py . Run your file with the Run
Module menu item in the Run menu, usually F5 .

4.6.3 Script Exercises
1. Print Script. Create and run Python file with commands like the following examples:

print 12345 + 23456
print 98765 - 12345
print 128 * 256
print 22 / 7

Or, use the print function as follows.

from __future__ import print_function
print (12345 + 23456)

print (98765 - 12345)

print (128 * 256)

print(22 / 7)

2. Another Simple Print Script. Create and run a Python file with commands like the following
examples:

print "one red", 18.0/38.0
print "two reds in a row", (18.0/38.0)**2

Or, use the print function as follows.

from __future__ import print_function
print("one red", 18.0/38.0)
print("two reds in a row", (18.0/38.0)*%*2)

3. Interactive Differences. First, run IDLE (or Python) interactively and enter the following “com-
mands”: copyright, license, credits. These are special global objects that print interesting things
on the interactive Python console.

Create a Python file with the three commands, each one on a separate line: copyright, license,
credits. When you run this, it doesn’t produce any output, nor does it produce an error.

Now create a Python file with three commands, each on a separate line: print copyright, print
license, print credits.

4.6. Exercises 43

Building Skills in Python, Release 2.6.5

Interestingly, these three global variables have different behavior when used in a script. This is rare.
By default, there are just three more variables with this kind of behavior: quit, exit and help.

4. Numeric Types. Compare the results of 22/7 and 22.0/7. Explain the differences in the output.

4.7 Other Tools

This section lists some additional tools which are popular ways to create, maintain and execute Python
programs. While IDLE is suitable for many purposes, you may prefer an IDE with a different level of
sophistication.

4.7.1 Any Platform

The Komodo Edit is an IDE that is considerably more sophisticated than IDLE. It is - in a way - too
sophisticated for this book. Our focus is on the language, not high-powered IDE’s. As with IDLE, this is a
tool that runs everywhere, so you can move seamlessly from GNU/Linux to Wiundows to the Mac OS with
a single, powerful tool.

See http://www.komodo.com for more information on ordering and downloading.

4.7.2 Windows

Windows programmers might want to use a tool like Textpad. See http://www.textpad.com for
information on ordering and downloading. Be sure to also download the python.syn file from
http://www.textpad.com/add-ons which has a number of Python syntax coloring configurations.

To use Textpad, you have two setup steps. First, you’ll need to add the Python document class. Second
you’ll need to tell Textpad about the Python tool.

The Python Document Class. You need to tell Textpad about the Python document class. Use the
Configure menu; the New Document Class... menu item lets you add Python documents to Textpad.
Name your new document class Python and click Next. Give your class members named *.py and click
Next. Locate your python.syn file and click Next. Check the new Python document class, and click Next
if everything looks right to create a new Textpad document class.

The Python Tool. You’ll want to add the Python interpreter as a Textpad tool. Use the Configure
menu again, this time selecting the Preferences? item. Scroll down the list of preferences on the left and
click on Tools. On the right, you’ll get a panel with the current set of tools and a prominent Add button
on the top right-hand side. Click Add, and select Program... from the menu that appears. You’ll get a
dialog for locating a file; find the Python.exe file. Click Okay to save this program as a Textpad tool.

You can check this by using Configure menu and Preferences... item again. Scroll down the list to find
Tools . Click the 4 sign and open the list of tools. Click the Python tool and check the following:

e The Command is the exact path to your copy of Python.exe
o The Parameters contains $File

o The Initial Folder contains $FileDir

e The “capture output” option should be checked

You might also want to turn off the Sound Alert option; this will beep when a program finishes running. I
find this makes things a little too noisy for most programs.

44 Chapter 4. Getting Started

http://www.komodo.com
http://www.textpad.com
http://www.textpad.com/add-ons

Building Skills in Python, Release 2.6.5

4.7.3 Macintosh

Macintosh programmers might want to use a tool like BBEdit. BBEdit can also run the programs, saving
the output for you. See http://www.barebones.com for more information on BBEdit.

To use BBEdit, you have two considerations when writing Python programs.

You must be sure to decorate each Python file with the following line: ‘#!/usr/bin/env python’ This
tells BBEdit that the file should be interpreted by Python. We’'ll mention this again, when we get to
script-writing exericses.

The second thing is to be sure you set the chdir to Script’s Folder option when you use the the run...
item in the #! (“shebang”) menu. Without this, scripts are run in the root directory, not in the directory
that contains your script file.

4.8 Style Notes: Wise Choice of File Names

There is considerable flexibility in the language; two people can arrive at different presentations of Python
source. Throughout this book we will present the guidelines for formatting, taken from the Python Enhance-
ment Proposal (PEP) 8, posted on http://python.org/dev/peps/pep-0008/.

We’ll include guidelines that will make your programming consistent with the Python modules that are
already part of your Python environment. These guidelines should also also make your programming look
like other third-party programs available from vendors and posted on the Internet.

Python programs are meant to be readable. The language borrows a lot from common mathematical notation
and from other programming languages. Many languages (C++ and Java) for instance, don’t require any
particular formatting; line breaks and indendentation become merely conventions; bad-looking, hard-to-read
programs are common. On the other hand, Python makes the line breaks and indentations part of the
language, forcing you to create programs that are easier on the eyes.

General Notes. We'll touch on many aspects of good Python style as we introduce each piece of Python
programming. We haven’t seen much Python yet, but we do need some guidance to prevent a few tiny
problems that could crop up.

First, Python (like all of Linux) is case sensitive. Some languages that are either all uppercase, or insensitive
to case. We have worked with programmers who actually find it helpful to use the Caps Lock key on their
keyboard to expedite working in an all-upper-case world. Please don’t do this. Python should look like
English, where lower-case letters predominate.

Second, Python makes use of indentation. Most programmers indent very nicely, and the compiler or
interpreter ignores this. Python doesn’t ignore it. Indentation is useful for write clear, meaning documents
and programs are no different.

Finally, your operating system allows a fairly large number of characters to appear in a file name. Until we
start writing modules and packages, we can call our files anything that the operating system will tolerate.
Starting in Components, Modules and Packages, however, we’ll have to limit ourselves to filenames that use
only letters, digits and ‘_’‘s. There can be just one ending for the filename: .py .

A file name like exercise_1.py is better than the name execise-1.py. We can run both programs equally
well from the command line, but the name with the hyphen limits our ability to write larger and more
sophisticated programs.

4.8. Style Notes: Wise Choice of File Names 45

http://www.barebones.com
http://python.org/dev/peps/pep-0008/

Building Skills in Python, Release 2.6.5

46

Chapter 4. Getting Started

CHAPTER

FIVE

SIMPLE NUMERIC EXPRESSIONS
AND OUTPUT

The print Statement and Numeric Operations

Basic expressions are the most central and useful feature of modern programming languages. To see the
results of expressions, we’ll use the print statement.

This chapter starts out with Seeing Output with the print() Function (or print Statement), which covers the
print statement. Numeric Types and Operators covers the basic numeric data types and operators that are
integral to writing expressions Python. Numeric Conversion (or “Factory”) Functions covers conversions
between the various numeric types. Built-In Math Functions covers some of the built-in functions that
Python provides.

5.1 Seeing Output with the print () Function (or print Statement)

Before delving into expressions and numbers, we’ll look at the print statement. We’ll cover just the essential
syntax of the print statement; it has some odd syntax quirks that are painful to explain.

Note: Python 3.0

Python 3.0 will replace the irregular print statement with a built-in print () function that is perfectly
regular, making it simpler to explain and use.

In order to use the print () function instead of the print statement, your script (or IDLE session) must
start off with the following.

from __future__ import print_function

This replaces the print statement, with it’s irregular syntax with the print () function.

5.1.1 print Statement Syntax Overview

The print statement takes a list of values and, well, prints them. Speaking strictly, it does two things:
1. it converts the objects to strings and

2. puts the characters of those strings on standard output.

47

Building Skills in Python, Release 2.6.5

Generally, standard output is the console window where Python was started, although there are ways to
change this that are beyond the scope of this book.

Here’s a quick summary of the more important features of print statement syntax. In short, the keyword,

‘print’, is followed by a comma-separated list of expressions.

print expression , ...)

Note: Syntax Summary

This syntax summary isn’t completely correct because it implies that the list of expressions is terminated
with a comma. Rather than fuss around with complex syntax diagrams (that’s what the Python reference
manual is for) we’ve shown an approximation that is close enough.

The ,” in a print statement is used to separate the various expressions.

A 4,7 can also be used at the end of the print statement to change the formatting; this is an odd-but-true
feature that is unique to print statement syntax.

It’s hard to capture this sublety in a single syntax diagram. Further, this is completely solved by using the
print () function.

One of the simplest kind of expressions is a quoted string. You can use either apostrophes (‘'’) or quotes
(‘") to surround strings. This gives you some flexibility in your strings. You can put an apostrophe into
a quoted string, and you can put quotes into an apostrophe’d string without the special escapes that some
other languages require. The full set of quoting rules and alternatives, however, will have to wait for Strings.

For example, the following trivial program prints three strings and two numbers.
print "Hi, Mom", "Isn't it lovely?", 'I said, "Hi".', 42, 91056

Multi-Line Output. Ordinarily, each print statement produces one line of output. You can end the print
statement with a trailing , to combine the results of multiple print statements into a single line. Here are
two examples.

print "335/113=",

print 335.0/113.0

print "Hi, Mom", "Isn't it lovely?",
print 'I said, "Hi".', 42, 91056

Since the first print statement ends with a , it does not produce a complete line of output. The second
print statement finishes the line of output.

Redirecting Output. The print statement’s output goes to the operating system’s standard output file.
How do we send output to the system’s standard error file? This involves some more advanced concepts, so
we’ll introduce it with a two-part recipe that we need to look at in more depth. We’ll revisit these topics in
Components, Modules and Packages .

First, you'll need access to the standard error object; you get this via the following statement.
import sys

Second, there is an unusual piece of syntax called a “chevron print” which can be used to redirect output to
standard error. ‘>>’

print file , { expression , ...)

48 Chapter 5. Simple Numeric Expressions and Output

Building Skills in Python, Release 2.6.5

Two common files are sys.stdout and sys.stderr. We'll return to files in Files.

Here is an example of a small script which produces messages on both stderr and stdout.

mixedout.py

#!/usr/bin/env python

"""Mized output in stdout and stderr.
import sys

print >>sys.stderr, "This is an error message"
print "This is stdout"

print >>sys.stdout, "This is also stdout"

nwmn

When you run this inside IDLE, you'll notice that the stderr is colored red, where the stdout is colored
black. You’ll also notice that the order of the output in IDLE doesn’t match the order in our program.
Most POSIX operating systems buffer stdout, but do not buffer stderr. Consequently, stdout messages don’t
appear until the buffer is full, or the program exits.

5.1.2 The print () Function
Python 3 replaces the relatively complex and irregular print statement with a simple and regular print ()
function.

In Python 2.6 we can use this new function by doing the following:
from __future__ import print_function

This statement must be one of the first executable statements in your script file. It makes a small — but
profuound — change to Python syntax. The Python processor must be notified of this intended change up
front.

This provides us with the following:

print (Jobject, ...], [sep=""], [end="n’], [file=sys.stdout])
This will convert each object to a string, and then write the characters on the given file.

The separator between objects is — by default — a single space. Setting a value for sep will set a different
separator.

The end-of-line character is — by default — a single newline. Setting a value for end will set a different
end-of-line character.

To change output files, provide a value for file.

Multiline Output. To create multiline output, do the following:

from __future__ import print_function

print("335/113=", end="")

print(335.0/113.0)

print("Hi, Mom", "Isn't it lovely?", end="")
print('I said, "Hi".', 42, 91056)

Redirecting Output. The print statement’s output goes to the operating system’s standard output file.
How do we send output to the system’s standard error file? This involves some more advanced concepts, so

5.1. Seeing Output with the print () Function (or print Statement) 49

Building Skills in Python, Release 2.6.5

we’ll introduce it with a two-part recipe that we need to look at in more depth. We’ll revisit these topics in
Components, Modules and Packages.

First, you'll need access to the standard error object.

Second, you’ll provide the file option to the print () function.
from __future__ import print_function

import sys

print("This is an error message", file=sys.stderr)

print("This is stdout")
print("This is also stdout", file=sys.stdout)

Adding Features. You can — with some care — add features to the print () function.

When we look at function definitions, we’ll look at how we can override the built-in print () function to add
our own unique features.

5.1.3 print Notes and Hints

A program produces a number of kinds of output. The print () function (or print statement) is a handy
jumping-off point. Generally, we’ll replace this with more advanced techiques.

e Final Reports. Our desktop applications may produce text-based report files. These are often done
with print statements.

e PDF or other format output files. A desktop application which produces PDF or other format files will
need to use additional libraries to produce PDF files. For example, ReportLab offers PDF-production
libraries. These applications won’t make extensive use of print statements.

o Error messages and processing logs. Logs and errors are often directed to the standard error file. You
won’t often use the print statement for this, but use the logging library.

e Debugging messages. Debugging messages are often handled by the logging library.

The print statement (or print() function) is a very basic tool for debugging a complex Python program.
Feel free to use print statements heavily to create a clear picture of what a program is actually doing.
Ultimately, you are likely to replace print statements with other, more sophisticated methods.

5.2 Numeric Types and Operators

Python provides four built-in types of numbers: plain integers, long integers, floating point numbers and
complex numbers.

Numbers all have several things in common. Principally, the standard arithmetic operators of ‘+’, ‘=7, ‘%’
/', ‘% and ‘**’ are all available for all of these numeric types. Additionally, numbers can be compared,
using comparison operators that we’ll look at in Comparisons. Also, numbers can be coerced from one type
to another.

More sophisticated math is separated into the math module, which we will cover later. However, a few
advanced math functions are an integral part of Python, including abs () and pow().

5.2.1 Integers

Plain integers are at least 32 bits long. The range is at least -2,147,483,648 to 2,147,483,647 (approximately
+ 2 billion).

50 Chapter 5. Simple Numeric Expressions and Output

http://www.reportlab.org

Building Skills in Python, Release 2.6.5

Python represents integers as strings of decimal digits. A number does not include any punctuation, and
cannot begin with a leading zero (0). Leading zeros are used for base 8 and base 16 numbers. We’ll look at
this below.

>>> 255+100
355

>>> 397-42
355

>>> T71%5
355

>>> 355/113
3

While most features of Python correspond with common expectations from mathematics and other program-
ming languages, the division operator, ‘/’, poses certain problems. Specifically, the distinction between the
algorithm and the data representation need to be made explicit. Division can mean either exact floating-
point results or integer results. Mathematicians have evolved a number of ways of describing precisely what
they mean when discussing division. We need similar expressive power in Python.We’ll look at more details
of division operators in Division Operators.

Binary, Octal and Hexadecimal. For historical reasons, Python supports programming in octal and
hexadecimal. I like to think that the early days of computing were dominated by people with 8 or 16 fingers.

A number with a leading ‘0’ (zero) is octal, base 8, and uses the digits 0 to 7. 0123 is octal and equal to 83
decimal.

A number with a leading 0x or 0X is hexadecimal, base 16, and uses the digits 0 through 9, plus ‘a’, ‘A’, ‘b’,
‘B’, ‘c’, ‘C’, ‘4, ‘D, ‘e, ‘B, ‘f’, and ‘F’. 0x2BC8 is hexadecimal and equal to 11208.

A number with a leading Ob or OB is binary, base 2, and uses digits 0 and 1.
Important: Leading Zeroes

When using Python 2.6, watch for leading zeros in numbers. If you simply transcribe programs from other
languages, they may use leading zeros on decimal numbers.

Important: Python 3

In Python 3, the octal syntax will change. Octal constants will begin with ‘0o’ to match hexadecimal
constants which begin with ‘0x’.

00123 will be octal and equal to 83 decimal.

5.2.2 Long Integers

One of the useful data types that Python offers are long integers. Unlike ordinary integers with a limited
range, long integers have arbitrary length; they can have as many digits as necessary to represent an exact
answer. However, these will operate more slowly than plain integers.

Long integers end in ‘L’ or ‘1. Upper case ‘L’ is preferred, since the lower-case ‘1’ looks too much like the

digit ‘1’. Python is graceful about converting to long integers when it is necessary.
Important: Python 3
Python 3 will not require the trailing ‘L. It will silently deduce if you need an integer or a long integer.

How many different combinations of 32 bits are there? The answer is there are 232; ‘2%*32’ in Python. The
answer is too large for ordinary integers, and we get the result as a long integer.

5.2. Numeric Types and Operators 51

Building Skills in Python, Release 2.6.5

>>> 2%*32

4294967296L

>>> 2%*x64
18446744073709551616L

There are about 4 billion ways to arrange 32 bits. How many bits in 1K of memory? 1024 x 8 bits. How
many combinations of bits are possible in 1K of memory? 21024x8,

print 2L**x(1024%8)

I won’t attempt to reproduce the output from Python. It has 2,467 digits. There are a lot of different
combinations of bits in only 1K of memory. The computer I'm using has 512 x 1024K bytes of memory;
there are a lot of combinations of bits available in that memory.

Python will silently convert between ultra-fast integers and slow-but-large long integers. You can force a
conversion using the int () or long() factory functions.

5.2.3 Floating-Point Numbers

Python offers floating-point numbers, often implemented as “double-precision” numbers, typically using 64
bits. Floating-point numbers are written in two forms: a simple string of digits that includes a decimal
point, and a more complex form that includes an explicit exponent.

.0625
0.0625
6.25E-2
625E-4

The last two examples are based on scientific notation, where numbers are written as a mantissa and an
exponent. The ‘E’ (or code:e) , powers of 10 are used with the exponent, giving us numbers that look like
this: 6.25 x 1072 and 625 x 1074,

The last example isn’t properly normalized, since the mantissa isn’t between 0 and 10.

Generally, a number, n, is some mantissa, g, and an exponent of ¢. For human consumption, we use a base
of 10.

Internally, most computers use a base of 2, not 10.

n =g x 10°

n=~hx2¢

This differece in the mantissa leads to slight errors in converting certain values, which are exact in base 10,
to approximations in base 2.

For example, 1/5th doesn’t have a precise representation. This isn’t generally a problem because we have
string formatting operations which can make this tiny representation error invisible to users.

>>> 1./5.
0.20000000000000001
>>> .2
0.20000000000000001

52 Chapter 5. Simple Numeric Expressions and Output

Building Skills in Python, Release 2.6.5

5.2.4 Complex Numbers

Besides plain integers, long integers and floating point numbers, Python also provides for imaginary and
complex numbers. These use the European convention of ending with ‘J” or ‘j’. People who don’t use
complex numbers should skip this section.

‘3.14J is an imaginary number = 3.14 x /—1.

A complex number is created by adding a real and an imaginary number: ‘2 + 14j’. Note that Python
always prints these in ()’s; for example (2+143).

The usual rules of complex math work perfectly with these numbers.

>>> (2+35)*(4+55)
(=7+223)

Python even includes the complex conjugate operation on a complex number. This operation follows the
complex number separated by a dot (*.”). This notation is used because the conjugate is treated like a method
function of a complex number object (we’ll return to this method and object terminology in Classes).

For example:

>>> 3+2j.conjugate()
(3-23)

5.3 Numeric Conversion (or “Factory”) Functions

We can convert a number from one type to another. A conversion may involve a loss of precision because
we’ve reduced the number of bits available. A conversion may also add a false sense of precision by adding
bits which don’t have any real meaning.

We'll call these factory functions because they are a factory for creating new objects from other objects. The
idea of factory function is a very general one, and these are just the first of many examples of this pattern.

5.3.1 Numeric Factory Function Definitions

There are a number of conversions from one numeric type to another.

int (z)
Generates an integer from the object z. If z is a floating point number, digits to the right of the decimal
point are truncated as part of creating an integer. If the floating point number is more than about 10
digits, a long integer object is created to retain the precision. If z is a long integer that is too large
to be represented as an integer, there’s no conversion. Complex values can’t be turned into integers
directly.

If z is a string, the string is parsed to create an integer value. It must be a string of digits with an
optional sign (‘+” or ‘-).

>>> int("1243")
1243

>>> int(3.14159)
3

5.3. Numeric Conversion (or “Factory”) Functions 53

Building Skills in Python, Release 2.6.5

float(x)
Generates a float from object z. If = is an integer or long integer, a floating point number is created.
Note that long integers can have a large number of digits, but floating point numbers only have
approximately 16 digits; there can be some loss of precision. Complex values can’t be turned into
floating point numbers directly.

If z is a string, the string is parsed to create an float value. It must be a string of digits with an
optional sign (‘+’ or ‘=’). The digits can have a single decimal point (*.”).

Also, a string can be in scientific notation and include ‘e’ or ‘E’ followed by the exponent as a simple
signed integer value.

>>> float(23)

23.0

>>> float("6.02E24")
6.0200000000000004e+24
>>> float(22)/7
3.14285714286

long(z)
Generates a long integer from z. If z is a floating point number, digits to the right of the decimal point
are truncated as part of creating a long integer.

>>> long(2)

2L

>>> long(6.02E23)
601999999999999995805696L
>>> long(2)**64
18446744073709551616L

complex (real, [imag])
Generates a complex number from real and imag. If the imaginary part is omitted, it is 0.0.

Complex is not as simple as the others. A complex number has two parts, real and imaginary. Con-
version to complex typically involves two parameters.

>>> complex(3,2)
(3+23)

>>> complex(4)
(4+03)

>>> complex("3+4j")
(3+43)

Note that the second parameter, with the imaginary part of the number, is optional. This leads to a
number of different ways to call this function. In the example above, we used three variations: two
numeric parameters, one numeric parameter and one string parameter.

5.4 Built-In Math Functions

Python has a number of built-in functions, which are an integral part of the Python interpreter. We can’t
look at all of them because many are related to features of the language that we haven’t addressed yet.

One of the built-in mathematical functions will have to wait for complete coverage until we’ve introduced
the more complex data types, specifically tuples, in Tuples. The divmod () function returns a tuple object
with the quotient and remainder in division.

54 Chapter 5. Simple Numeric Expressions and Output

Building Skills in Python, Release 2.6.5

5.4.1 Built-In Math Functions

The bulk of the math functions are in a separate module, called math, which we will cover in The math
Module . The formal definitions of mathematical built-in functions are provided below.

abs (number)
Return the absolute value of the argument, |z|.

pow(z, y, [2])
Raise z to the y power, z¥. If z is present, this is done modulo z, ¥ mod z.

round (number, [digits])
Round number to ndigits beyond the decimal point.

If the ndigits parameter is given, this is the number of decimal places to round to. If ndigits is positive,
this is decimal places to the right of the decimal point. If ndigits is negative, this is the number of
places to the left of the decimal point.

Examples:

>>> print round(678.456,2)
678.46
>>> print round(678.456,-1)
680.0

5.4.2 String Conversion Functions

The string conversion functions provide alternate representations for numeric values. This list expands on
the function definitions in Numeric Conversion (or “Factory”) Functions.

hex (number)
Create a hexadecimal string representation of number. A leading ‘Ox’ is placed on the string as a
reminder that this is hexadecimal.

>>> hex(684)
'0x2ac'

oct (number)
Create a octal string representation of number. A leading ‘0’ is placed on the string as a reminder that
this is octal not decimal.

>>> oct (509)
'0775"'

bin(number)
Create a binary representation of number. A leading ‘Ob’ is placed on the string as a reminder that
this is binary and not decimal.

>>> bin(509)
'Ob111111101"

int (string, [base])
Generates an integer from the string z. If base is supplied, z must be a string in the given base. If base
is omitted, the string z must be decimal.

5.4. Built-In Math Functions 55

Building Skills in Python, Release 2.6.5

>>> int('0775', 8)

509

>>> int('Ox2ac', 16)

634

>>> int('101101101101', 2)
2925

The int () function has two forms. The ‘int (x)’ form converts a decimal string, z, to an integer. For
example, ‘int('25')’ is 25.

The ‘int (x,b)’ form converts a string, z, in base b to an integer. For example, ‘int('25',8)’ is 21.

str(object)
Generate a string representation of the given object. This is the a “readable” version of the value.

repr (object)
Generate a string representation of the given object. Generally, this is the a Python expression that
can reconstruct the value; it may be rather long and complex.

For the numeric examples we’ve seen so far, the value of repr () is generally the same as the value of
strQ).

The str() and repr() functions convert any Python object to a string. The str() version is typically
more readable, where the repr () version is an internalized representation. For most garden-variety numeric
values, there is no difference. For the more complex data types, however, the resultsof repr() and str()
can be very different. For classes you write (see Classes), your class definition must provide these string
representation functions.

5.4.3 Collection Functions

These are several built-in functions which operate on simple collections of data elements.
max (value, ...)

Return the largest value.

>>> max(1,2,3)
3

min (value, ...)
Return the smallest value.

>>> min(1,2,3)
1

Additionally, there are several other collection-handling functions, including any (), al1() and sum(). These
will have to wait until we can look at collection objects in Data Structures.

5.5 Expression Exercises

There are two sets of exercises. The first section, Basic Output and Functions, covers simpler exercises to
reinforce Python basics. The second section, Numeric Types and Expressions, covers more complex numeric
expressions.

56 Chapter 5. Simple Numeric Expressions and Output

Building Skills in Python, Release 2.6.5

5.5.1 Basic Output and Functions

1.

Print Expression Results. In Command-Line Ezxercises, we entered some simple expressions into
the Python interpreter. Change these simple expressions into print statements.

Be sure to print a label or identifier with each answer. Here’s a sample.
print "9-1's % 9-1's =", 111111111%111111111
Here’s an example using the print () function.

from __future__ import print_function
print("9-1's * 9-1's = ", 111111111%111111111)

Evaluate and Print Expressions. Write short scripts to print the results of the following expressions.
In most places, changing integers to floating point produces a notably different result. For example
‘(296/167)**2’ and ‘(296.0/167.0)**2’ . Use long as well as complex types to see the differences.

e ‘355/113 * (1 - 0.0003/3522)’
e ‘22/17 + 37/47 + 88/83’
e ‘(553/312)*%2’

Numeric Conversion. Write a print statement to print the mixed fraction 3% as a floating point
number and as an integer.

. Numeric Truncation. Write a print statement to compute ‘(22.0/7.0)-int(22.0/7.0)". What is

this value? Compare it with ‘22.0/7.0’. What general principal does this illustrate?

Illegal Conversions. Try illegal conversions like ‘int('A')’ or ‘int(3+4j). Why are exceptions
raised? Why can’t a simple default value like zero or None be used instead?

Evaluate and Print Built-in Math Functions. Write short scripts to print the results of the
following expressions.

. ‘pow(2143/22, 0.25)’

. ‘pow(553/312,2)’

e ‘pow(long(3), 64)’

e ‘long(pow(float(3), 64))’

Why do the last two produce different results? What does the difference between the two results tell
us about the number of digits of precision in floating-point numbers?

Evaluate and Print Built-in Conversion Functions. Here are some more expressions for which
you can print the results.

e hex(1234)

o int(hex(1234), 16)
o long(‘Oxab’)

o int(‘Oxab’)

o int(‘Oxab’, 16)

o int(‘ab’, 16)

e crp(2,3)

5.5.

Expression Exercises 57

Building Skills in Python, Release 2.6.5

5.5.2 Numeric Types and Expressions

1. Stock Value. Compute value from number of shares xpurchase price for a stock.

Once upon a time, stock prices were quoted in fractions of a dollar, instead of dollars and cents. Create
a simple print statement for 125 shares purchased at 3%. Create a second simple print statement for
150 shares purchased at 2i plus an additional 75 shares purchased at 1%.

Don’t manually convert i to 0.25. Use a complete expression of the form ‘2+1/4.0’; just to get more
practice writing expressions.

. Convert Between |deg| C and |deg| F. Convert temperatures from one system to another.

Conversion Constants: 32 °F = 0 °C, 212 °F = 100 °C.

The following two formulae converts between °C (Celsius) and °F (Fahrenheit).

212 — 32
F=32422_9%
32 + 100 x C
100
—(F—32) x —
C=F=-32)x o5

Create a print statement to convert 18 °C to °F.

Create a print statement to convert -4 °F to °C.

. Periodic Payment on a Loan. How much does a loan really cost?

Here are three versions of the standard mortgage payment calculation, with m = payment, p = principal
due, r = interest rate, n = number of payments.

Don’t be surprised by the sign of the results; they’re opposite the sign of the principle. With a positive
principle, you get negative numbers; you are paying down a principle.

= ()

Mortgage with payments due at the end of each period:

_—rp(r+1)7
C(r+ 1) -1

Mortgage woth payments due at the beginning of each period:

—rp(r+1)"
[(r+ 1 =1](r+1)

Use any of these forms to compute the mortgage payment, m, due with a principal, p, of $110,000,
an interest rate, r, of 7.25% annually, and payments, n, of 30 years. Note that banks actually process
things monthly. So you’ll have to divide the interest rate by 12 and multiply the number of payments
by 12.

. Surface Air Consumption Rate. SACR is used by SCUBA divers to predict air used at a particular

depth. For each dive, we convert our air consumption at that dive’s depth to a normalized air
consumption at the surface. Given depth (in feet), d , starting tank pressure (psi), s, final tank
pressure (psi), f, and time (in minutes) of ¢, the SACR, ¢, is given by the following formula.

I ICRl))
t(d + 33)

Typical values for pressure are a starting pressure of 3000, final pressure of 500.

58

Chapter 5. Simple Numeric Expressions and Output

Building Skills in Python, Release 2.6.5

A medium dive might have a depth of 60 feet, time of 60 minutes.
A deeper dive might be to 100 feet for 15 minutes.

A shallower dive might be 30 feet for 60 minutes, but the ending pressure might be 1500. A typical ¢
(consumption) value might be 12 to 18 for most people.

Write print statements for each of the three dive profiles given above: medium, deep and shallow.

Given the SACR, ¢, and a tank starting pressure, s, and final pressure, f, we can plan a dive to depth
(in feet), d, for time (in minutes), ¢, using the following formula. Usually the 33(s — f)/c is a constant,
based on your SACR and tanks.

733(50_ D _ i+ 33

For example, tanks you own might have a starting pressure of 2500 and and ending pressure of 500,
you might have a ¢ (SACR) of 15.2. You can then find possible combinations of time and depth which
you can comfortably dive.

Write two print statements that shows how long one can dive at 60 feet and 70 feet.
5. Force on a Sail. How much force is on a sail?

A sail moves a boat by transferring force to its mountings. The sail in the front (the jib) of a typical
fore-and-aft rigged sailboat hangs from a stay. The sail in the back (the main) hangs from the mast.
The forces on the stay (or mast) and sheets move the boat. The sheets are attached to the clew of the
sail.

The force on a sail, f, is based on sail area, a (in square feet) and wind speed, v‘w* (in miles per hour).
f=w?x0.004xa

For a small racing dinghy, the smaller sail in the front might have 61 square feet of surface. The larger,
mail sail, might have 114 square feet.

Write a print statement to figure the force generated by a 61 square foot sail in 15 miles an hour of
wind.

6. Craps Odds. What are the odds of winning on the first throw of the dice? There are 36 possible
rolls on 2 dice that add up to values from 2 to 12. There is just 1 way to roll a 2, 6 ways to roll a 7,
and 1 way to roll a 12. We'll take this as given until a later exercise where we have enough Python to
generate this information.

Without spending a lot of time on probability theory, there are two basic rules we’ll use time and
again. If any one of multiple alternate conditions needs to be true, usually expressed as “or”, we add
the probabilities. When there are several conditions that must all be true, usually expressed as “and”,
we multiply the probabilities.

Rolling a 3, for instance, is rolling a 1-2 or rolling a 2-1. We add the probabilities: 1/36 4+ 1/36 =
2/36 = 1/18.

On a come out roll, we win immediately if 7 or 11 is rolled. There are two ways to roll 11 (2/36) or 6
ways to roll 7 (6/36).

Write a print statement to print the odds of winning on the come out roll. This means rolling 7 or
rolling 11. Express this as a fraction, not as a decimal number; that means adding up the numerator
of each number and leaving the denominator as 36.

7. Roulette Odds. How close are payouts and the odds?

An American (double zero) roulette wheel has numbers 1-36, 0 and 00. 18 of the 36 numbers are red,
18 are black and the zeroes are green. The odds of spinning red, then are 18/38. The odds of zero or
double zero are 2/36.

5.5. Expression Exercises 59

Building Skills in Python, Release 2.6.5

Red pays 2 to 1, the real odds are 38/18.
Write a print statement that shows the difference between the pay out and the real odds.
You can place a bet on 0, 00, 1, 2 and 3. This bet pays 6 to 1. The real odds are 5/36.

Write a print statement that shows the difference between the pay out and the real odds.

5.6 Expression Style Notes

Spaces are used sparingly in expressions. Spaces are never used between a function name and the ()’s that
surround the arguments. It is considered poor form to write:

int (22.0/7)
The preferred form is the following:

int(22.0/7)

A long expression may be broken up with spaces to enhance readability. For example, the following separates
the multiplication part of the expression from the addition part with a few wisely-chosen spaces.

b**2 — 4dxakxc

60 Chapter 5. Simple Numeric Expressions and Output

CHAPTER
SIX

ADVANCED EXPRESSIONS

The math and random Modules, Bit-Level Operations, Division

This chapter covers some more advanced topics. The math Module cover the math module. The The random
Module covers elements of the random module.

Division Operators covers the important distinction between the division operators. We also provide some
supplemental information that is more specialized. Bit Manipulation Operators covers some additional bit-
fiddling operators that work on the basic numeric types. Expression Style Notes has some notes on style.

6.1 Using Modules

A Python module extends the Python execution environment by adding new classes, functions and helpful
constants. We tell the Python interpreter to fetch a module with a variation on the import statement.
There are several variations on import, which we’ll cover in depth in Components, Modules and Packages.

For now, we’ll use the simple import:
import m

This will import module m. Only the module’s name, m is made available. Every name inside the module m
must be qualified by prepending the module name and a ‘.”. So if module m had a function called spam(),
we’d refer to it as m.spam().

There are dozens of standard Python modules. We'll get to the most important ones in Components, Modules
and Packages. For now, we’ll focus on extending the math capabilities of the basic expressions we’ve looked
so far.

6.2 The math Module

The math module is made available to your programs with:
import math

The math module contains a number of common trigonometric functions.

acos(z)
Arc cosine of z; result in radians.

61

Building Skills in Python, Release 2.6.5

asin(x)
arc sine of z; result in radians.

atan(z)
arc tangent of z; result in radians.

atan2(y, x)
arc tangent of y + x: arctan(¥); result in radians.

cos(x)
cosine of z in radians.

cosh(x)
hyperbolic cosine of z in radians.

exp(x)
e”, inverse of log(x).
hypot (z, y)

Euclidean distance, \/22 + y2; the length of the hypotenuse of a right triangle with height of :replace-
able:y‘ and length of z.

log(x)
Natural logarithm (base e) of z. Inverse of exp(). n = e"™.

log10(x)
natural logarithm (base 10) of z , inverse of 10** 1. n = 10'°&",

pow (z, y)
xY.

sin(x)
sine of z in radians.

sinh(z)
hyperbolic sine of z in radians.

sqrt(z)
square root of . This version returns an error if you ask for ‘sqrt(-1)’, even though Python under-
stands complex and imaginary numbers. A second module, cmath, includes a version of sqrt () which
correctly creates imaginary numbers.

tan(zx)
tangent of z in radians.

tanh ()
hyperbolic tangent of z in radians.

Additionally, the following constants are also provided.
math.pi the value of 7, 3.1415926535897931
math.e the value of e, 2.7182818284590451, used for the exp() and log() functions.
Conversion between radians, r, and degrees, d, is based on the following definition:
360 degrees = 2 x 7 radians
From that, we get the following relationships:

dxm=1rx 180
r x 180 d
d= J =T X ——
T 180

The math module contains the following other functions for dealing with floating point numbers.

62 Chapter 6. Advanced Expressions

Building Skills in Python, Release 2.6.5

ceil(x)
Next larger whole number.

>>> import math
>>> math.ceil(5.1)
6.0

>>> math.ceil(-5.1)
-5.0

fabs(x)
Absolute value of the real z.

floor(zx)
Next smaller whole number.

>>> import math

>>> math.floor(5.9)
5.0

>>> math.floor(-5.9)
-6.0

fmod (z, y)
Floating point remainder after division of | + y|. This depends on the platform C library and may
handle the signs differently than the Python ‘x % y’.

>>> math.fmod(-22, 7)
-1.0

>>> =22 % 7

6

modf (z)
Creates a tuple with the fractional and integer parts of z. Both results carry the sign of z so that z
can be reconstructed by adding them. We’ll return to tuples in Tuples.

>>> math.modf (123.456)
(0.45600000000000307, 123.0)

frexp(x)
This function unwinds the usual base-2 floating point representation. A floating point number is m x 2€¢,
where m is always a fraction % <m <1, and e is an integer. This function returns a tuple with m and
e. The inverse is ‘1dexp(m,e)’.

ldexp(m, e)
Calculat m x 2¢, the inverse of ‘frexp(x)’.

6.3 The random Module

The random module contains a large number of functions for working with distributions of random numbers.
There are numerous functions available, but the later exercises will only use these functions.

The random module is made available to your program with:
import random

Here are the definitions of some commonly-used functions.

6.3. The random Module 63

Building Skills in Python, Release 2.6.5

choice (sequence)
Chooses a random value from the sequence sequence.

>>> import random
>>> random.choice(['red', 'black', 'green'])
'red'

random()
A random floating point number, r, such that 0 < r < 1.0.

randrange ([start], stop, [step])
Choose a random element from ‘range(start, stop, step)’

e ‘randrange (6)’ returns a number, 7, such that 0 < r < 6. There are 6 values between 0 and 5.
e ‘randrange(1,7)’ returns a number, r, such that 1 <r < 7. There are 6 values between 1 and 6.

e ‘randrange (10,100,5) returns a number, such that 10 < 5k < 100. for some integer value of k.
These are values 10, 15, 20, ..., 95.

randint (a, b)
Choose a random number, r, such that ¢ < r < b. Unlike randrange (), this function includes both
end-point values.

uniform(a, b)
Returns a random floating point number, r, such that a < r < b.

The randrange () has two optional values, making it particularly flexible. Here’s an example of some of the
alternatives.

demorandom.py

#!/usr/bin/env python

import random

Simple Range 0 <= r < 6

print random.randrange(6), random.randrange(6)

More complex range 1 <= r < 7

print random.randrange(1,7), random.randrange(1,7)

Really complex range of even numbers between 2 and 36
print random.randrange(2,37,2)

0dd numbers from 1 to 35

print random.randrange(1,36,2)

This demonstrates a number of ways of generating random numbers. It uses the basic random.randrange ()
with a variety of different kinds of arguments.

6.4 Advanced Expression Exercises

1. Evaluate These Expressions. The following expressions are somewhat more complex, and use
functions from the math module.

‘math.sqrt(40.0/3.0 - math.sqrt(12.0))’
‘6.0/5.0%((math.sqrt(5)+1) / 2)**2’
‘math.log(2198) / math.sqrt(6)’

64 Chapter 6. Advanced Expressions

Building Skills in Python, Release 2.6.5

2. Run demorandom.py. Run the demorandom.py script several times and save the results. Then add
the following statement to the script and run it again several times. What happens when we set an
explicit seed?

#!1/usr/bin/env python
import random
random.seed (1)
...everything else the same

Try the following variation, and see what it does.

#!/usr/bin/env python
import random, time
random.seed (time.clock())
...everything else the same

3. Wind Chill. Wind chill is used by meteorologists to describe the effect of cold and wind combined.
Given the wind speed in miles per hour, V, and the temperature in °F, T, the Wind Chill, w, is given
by the formula below.

Wind Chill, new model

35.74 4+ 0.6215 x T — 35.75 x (V16) 404275 x T x (V%16)
Wind Chill, old model

0.081 x (3.71 x V'V +5.81 — 0.25 x V) x (T — 91.4) +91.4

Wind speeds are for 0 to 40 mph, above 40, the difference in wind speed doesn’t have much practical
impact on how cold you feel.

Write a print statement to compute the wind chill felt when it is -2 °F and the wind is blowing 15
miles per hour.

4. How Much Does The Atmosphere Weigh? Part 1 From Slicing Pizzas, Racing Turtles, and
Further Adventures in Applied Mathematics, [Banks02]. Pressure is measured in Newtons, N, kg -
m/sec?. Air Pressure is is measured in Newtons of force per square meter, N/m?.

Air Pressure (at sea level) Py. This is the long-term average.
Py =1.01325 x 10°
Acceleration is measured in m/sec?. Gravity acceleration (at sea level) g.
g =9.82

We can use g to get the kg of mass from the force of air pressure Py. Apply the acceleration of gravity
(in m/sec?) to the air pressure (in kg-m/sec?). This result is mass of the atmosphere in kilograms per
square meter (kg/m?).

Mmzzpoxg

Given the mass of air per square meter, we need to know how many square meters of surface to apply
this mass to.

Radius of Earth R in meters, m. This is an average radius; our planet isn’t a perfect sphere.

R =6.37 x 10°

6.4. Advanced Expression Exercises 65

Building Skills in Python, Release 2.6.5

The area of a Sphere.
A = 47r?
Mass of atmosphere (in Kg) is the weight per square meter, times the number of square meters.
M,=PyxgxA
Check: somewhere around 10'® kg.

5. How Much Does The Atmosphere Weigh? Part 2. From Slicing Pizzas, Racing Turtles, and
Further Adventures in Applied Mathematics, [Banks02].

The exercise How Much Does the Atmosphere Weigh, Part 1 assumes the earth to be an entirely flat
sphere. The averge height of the land is actually 840m. We can use the ideal gas law to compute the
pressure at this elevation and refine the number a little further.

Pressure at a given elevation
P = Py x eft?
Molecular weight of air m = 28.96 x 10~3kg/mol.
m = 28.96 x 107°

Gas constant R, in joule/(K - mol).

R=28314
Gravity g, in m/sec?.

g =19.82
Temperature T, in °K based on temperature C, in °C. We’ll just assume that C is 15 °C.

T=2713+C

Elevation z, in meters, m.

z =840

This pressure can be used for the air over land, and the pressure computed in How Much Does the
Atmosphere Weigh, Part 1 can be used for the air over the oceans. How much land has this reduced
pressure? Reference material gives the following areas in m?, square meters.

ocean area: A, = 3.61 x 10
land area: A4; = 1.49 x 104
Weight of Atmosphere, adjusted for land elevation
M, =PFPyxgxAyg+ P x g x A

6.5 Bit Manipulation Operators

We've already seen the usual math operators: ‘+, ‘=7, ¥’ ¢/’ ‘%’ “*x’; as well as the abs() and pow()
functions. There are several other operators available to us. Principally, these are for manipulating the
individual bits of an integer value.

We'll look at ‘~7, ‘&, =7, ‘|7, ‘<<’ and >>".
The unary ‘~” operator flops all the bits in a plain or long integer. 1’s become 0’s and 0’s become 1’s. Since

most hardware uses a technique called 2’s complement, this is mathematically equivalent to adding 1 and
switching the number’s sign.

66 Chapter 6. Advanced Expressions

Building Skills in Python, Release 2.6.5

>>> print ~0x12345678
-305419897

There are binary bit manipulation operators, also. These perform simple Boolean operations on all bits of
the integer at once.

The binary ‘&’ operator returns a 1-bit if the two input bits are both 1.

>>> print 0&0, 1&0, 1&1, 0&1
0010

Here’s the same kind of example, combining sequences of bits. This takes a bit of conversion to base 2 to
understand what’s going on.

>>> print 3&5
1

The number 3, in base 2, is 0011. The number 5 is 0101. Let’s match up the bits from left to right:

The binary ‘=’ operator returns a 1-bit if one of the two inputs are 1 but not both. This is sometimes called
the exclusive or.

>>> print 375
6

Let’s look at the individual bits

Which is the binary representation of the number 6.
The binary ‘|’ operator returns a 1-bit if either of the two inputs is 1. This is sometimes called the inclusive

or. Sometimes this is written and/or.

>>> print 3(5
7

Let’s look at the individual bits.

Which is the binary representation of the number 7.

There are also bit shifting operations. These are mathematically equivalent to multiplying and dividing by
powers of two. Often, machine hardware can execute these operations faster than the equivalent multiply or
divide.

6.5. Bit Manipulation Operators 67

Building Skills in Python, Release 2.6.5

The ‘<<’ is the left-shift operator. The left argument is the bit pattern to be shifted, the right argument is
the number of bits.

>>> print OxA << 2
40

0xA is hexadecimal; the bits are 1-0-1-0. This is 10 in decimal. When we shift this two bits to the left, it’s
like multiplying by 4. We get bits of 1-0-1-0-0-0. This is 40 in decimal.

The ‘>>’ is the right-shift operator. The left argument is the bit pattern to be shifted, the right argument
is the number of bits. Python always behaves as though it is running on a 2’s complement computer. The
left-most bit is always the sign bit, so sign bits are shifted in.

>>> print 80 >> 3
10

The number 80, with bits of 1-0-1-0-0-0-0, shifted right 3 bits, yields bits of 1-0-1-0, which is 10 in decimal.

There are some other operators available, but, strictly speaking, they’re not arithmetic operators, they’re
logic operations. We'll return to them in Truth, Comparison and Conditional Processing.

6.6 Division Operators

In general, the data type of an expresion depends on the types of the arguments. This rule meets our
expectations for most operators: when we add two integers, the result should be an integer. However,
this doesn’t work out well for division because there are two different expectations. Sometimes we expect
division to create precise answers, usually the floating-point equivalents of fractions. Other times, we want
a rounded-down integer result.

The classical Python definition of ‘/’ followed the pattern for other operators: the results depend entirely
on the arguments. ‘685/252” was 2 because both arguments where integers. However, ‘685./252.’ was
2.7182539682539684 because the arguments were floating point.

This definition often caused problems for applications where data types were used that the author hadn’t
expected. For example, a simple program doing Celsius to Fahrenheit conversions will produce different
answers depending on the input. If one user provides ‘18’ and another provides ‘18.0°, the answers were
different, even though all of the inputs all had the equal numeric values.

>>> 18%9/5+32

64

>>> 18.0%9/5+32
64.400000000000006
>>> 18 == 18.0
True

This unexpected inaccuracy was generally due to the casual use of integers where floating-point numbers
were more appropriate. (This can also occur using integers where complex numbers were implictly expected.)
An explicit conversion function (like f1oat ()) can help prevent this. The idea, however, is for Python be a
simple and sparse language, without a dense clutter of conversions to cover the rare case of an unexpected
data type.

Starting with Python 2.2, a new division operator was added to clarify what is required. There are two
division operators: ‘/” and ‘//’. The ¢/’ operator should return floating-point results; the ‘//’ operator will
always return rounded-down results.

68 Chapter 6. Advanced Expressions

Building Skills in Python, Release 2.6.5

In Python 2.5 and 2.6, the ‘/’ operator can either use “classical” or “old” rules (results depend on the values)
or it can use the “new” rule (result is floating-point.) In Python 3.x, this transitional meaning of ‘/’ goes
away and it always produces a floating-point result.

Important: Python 3

In Python 3, the ¢/’ operator will always produces a floating-point result. The ‘//’ operator will continue to
produce an integer result.

To help with the transition, two tools were made available. This gives programmers a way to keep older
applications running; it also gives them a way to explicitly declare that their program uses the newer operator
definition. There are two parts to this: a program statememt that can be placed in a program, as well as
command-line options that can be used when starting the Python interpreter.

Program Statements. To ease the transition from older to newer language features, there is a __future__
module available. This module includes a division definition that changes the definition of the ¢/’ operator
from classical to future. You can include the following import statement to state that your program depends
on the future definition of division. We’ll look at the import statement in depth in Components, Modules
and Packages.

from __future__
print 18%9/5+32
print 18%9//5+32

import division

This produces the following output. The first line shows the new use of the ‘/’ operator to produce floating
point results, even if both arguments are integers. The second line shows the ‘//’ operator, which produces
rounded-down results.

64.4
64

The from __ future__ statement will set the expectation that your script uses the new-style floating-
point division operator. This allows you to start writing programs with version 2.6 that will work correctly
with all future versions. By version 3.0, this import statement will no longer be necessary, and these will
have to be removed from the few modules that used them.

Command Line Options. Another tool to ease the transition are command-line options used when running
the Python interpreter. This can force old-style interpretation of the ‘/’ operator or to warn about old-style
use of the ‘/” operator between integers. It can also force new-style use of the ‘/’ operator and report on all
potentially incorrect uses of the ‘/’ operator.

The Python interpreter command-line option of ‘-Q’ will force the ¢/’ operator to be treated classically
(“old”), or with the future (“new”) semantics. If you run Python with ‘-Qold’ , the ‘/’ operator’s result
depends on the arguments. If you run Python with ‘-Qnew’, the ‘/’ operator’s result will be floating point.
In either case, the ‘//’ operator returns a rounded-down integer result.

You can use ‘-Qold’ to force old modules and programs to work with version 2.2 and higher. When Python
3.0 is released, however, this transition will no longer be supported; by that time you should have fixed your
programs and modules.

To make fixing easier, the ‘-Q’ command-line option can take two other values: ‘warn’ and ‘warnall’ . If
you use ‘-Qwarn’, then the ‘/’ operator applied to integer arguments will generate a run-time warning. This
will allow you to find and fix situations where the ‘//’ operator might be more appropriate. If you use
‘-Qwarnall’, then all instances of the ¢/’ operator generate a warning; this will give you a close look at your
programs.

You can include the command line option when you run the Python interpreter. For Linux and MacOS
users, you can also put this on the ‘#!’ line at the beginning of your script file.

6.6. Division Operators 69

Building Skills in Python, Release 2.6.5

#!/usr/local/bin/python -Qnew

70

Chapter 6. Advanced Expressions

CHAPTER

SEVEN

VARIABLES, ASSIGNMENT AND
INPUT

The = , augmented = and del Statements

Variables hold the state of our program. In Variables we’ll introduce variables, then in The Assignment
Statement we’ll cover the basic assignment statement for changing the value of a variable. This is followed
by an exercise section that refers back to exercises from Simple Numeric Expressions and Output. In Input
Functions we introduce some primitive interactive input functions that are built-in. This is followed by
some simple exercises that build on those from section The Assignment Statement. We’ll cover the multiple
assignment statement in Multiple Assignment Statement. We’ll round on this section with the del statement,
for removing variables in The del Statement.

7.1 Variables

As a procedural program makes progress through the steps from launch to completion, it does so by under-
going changes of state. The state of our program as a whole is the state of all of the program’s variables.
When one variable changes, the overall state has changed.

Variables are the names your program assigns to the results of an expression. Every variable is created with
an initial value. Variables will change to identify new objects and the objects identified by a variable can
change their internal state. These three kinds of state changes (variable creation, object assignment, object
change) happen as inputs are accepted and our program evaluates expressions. Eventually the state of the
variables indicates that we are done, and our program can exit.

A Python variable name must be at least one letter, and can have a string of numbers, letters and ‘_’‘s
to any length. Names that start with ‘_’ or ‘__’ have special significance. Names that begin with ‘_’ are
typically private to a module or class. We'll return to this notion of privacy in Classes and Modules. Names
that begin with ‘__’ are part of the way the Python interpreter is built.

Example variable names:

a
pi
aVeryLongName
a_name

str

_hidden

Tip: Tracing Execution

71

Building Skills in Python, Release 2.6.5

We can trace the execution of a program by simply following the changes of value of all the variables in the
program. For programming newbies, it helps to create a list of variables and write down their changes when
studying a program. We’ll show an example in the next section.

Python creates new objects as the result of evaluating an expression. Python assigns these objects to new
variables with an assignment statement. Python removes variables with a del statement. The underlying
object is later garbage-collected when there are no more variables referring to the object.

Some Consequences. A Python variable is little more than a name which refers to an object. The central
issue is to recognize that the underlying object is the essential part of our program; a variable name is just
a meaningful label. This has a number of important consequences.

One consequence of a variable being simply a label is that any number of variables can refer to the same
object. In other languages (C, C++, Java) there are two kinds of values: primitive and objects, and there
are distinct rules for handling the two kinds of values. In Python, every variable is a simple reference to
an underlying object. When talking about simple immutable objects, like the number 3, multiple variables
referring to a common object is functionally equivalent to having a distinct copy of a primitive value. When
talking about mutable objects, like lists, mappings, or complex objects, distinct variable references can
change the state of the common object.

Another consequences is that the Python object fully defines it’s own type. The object’s type defines the
representation, the range of values and the allowed operations on the object. The type is established when the
object is created. For example, floating point addition and long integer objects have different representations,
operations of adding these kinds of numbers are different, the objects created by addition are of distinct types.
Python uses the type information to choose which addition operation to perform on two values. In the case of
an expression with mixed types Python uses the type information to coerce one or both values to a common

type.

This also means the “casting” an object to match the declared type of a variable isn’t meaningful in Python.
You don’t use C++ or Java-style casting.

We’ve already worked with the four numeric types: plain integers, long integers, floating point numbers and
complex numbers. We’ve touched on the string type, also. There are several other built-in types that we
will look at in detail in Data Structures. Plus, we can use class definitions to define new types to Python,
something we’ll look at in Data + Processing = Objects.

We commonly say that a static language associates the type information with the variable. Only values of
a certain type can be assigned to a given variable. Python, in contrast, is a dynamic language; a variable is
just a label or tag attached to the object. Any variable can be associated with an object of any type.

The final consequence of variables referring to objects is that a variable’s scope can be independent of the
object itself. This means that variables which are in distinct namespaces can refer to the same object. When
a function completes execution and the namespace is deleted, the variables are deleted, and the number of
variables referring to an object is reduced. Additional variables may still refer to an object, meaning that
the object will continue to exist. When only one variable refers to an object, then removing the last variable
removes the last reference to the object, and the object can be removed from memory.

Also note that expressions generally create new objects; if an object is not saved in a variable, it silently
vanishes. We can safely ignore the results of a function.

Scope and Namespaces. A Python variable is a name which refers to an object. To be useful, each
variable must have a scope of visibility. The scope is defined as the set of statements that can make use of
this variable. A variable with global scope can be referenced anywhere. On the other hand, a variable with
local scope can only be referenced in a limited suite of statements.

This notion of scope is essential to being able to keep a intellectual grip on a program. Programs of even
moderate complexity need to keep pools of variables with separate scopes. This allows you to reuse variable
names without risk of confusion from inadvertantly changing the value of a variable used elsewhere in a
program.

72 Chapter 7. Variables, Assignment and Input

Building Skills in Python, Release 2.6.5

Python collects variables into pools called namespaces . A new namespace is created as part of evaluating
the body of a function or module, or creating a new object. Additionally, there is one global namespace.
This means that each variable (and the state that it implies) is isolated to the execution of a single function
or module. By separating all locally scoped variables into separate namespaces, we don’t have an endless
clutter of global variables.

In the rare case that you need a global variable, the global statement is available to assign a variable to the
global namespace.

When we introduce functions in Functions, classes in Classes and modules in Components, Modules and
Packages, we’ll revisit this namespace technique for managing scope. In particular, see Functions and
Namespaces for a digression on this.

7.2 The Assignment Statement

Assignment is fundamental to Python; it is how the objects created by an expression are preserved. We’ll look
at the basic assignment statement, plus the augmented assignment statement. Later, in Multiple Assignment
Statement, we’ll look at multiple assignment.

7.2.1 Basic Assignment

We create and change variables primarily with the assignment statement. This statement provides an
expression and a variable name which will be used to label the value of the expression.

variable = expression

Here’s a short script that contains some examples of assignment statements.
example3.py

#!/usr/bin/env python

Computer the walue of a block of stock
shares= 150

price= 3 + 5.0/8.0

value= shares * price

print value

1. We have an object, the number 150, which we assign to the variable shares.

2. We have an expression ‘3+5.0/8.0°, which creates a floating-point number, which we save in the
variable price.

3. We have another expression, ‘shares * price’, which creates a floating-point number; we save this in
value so that we can print it. This script created three new variables.

Since this file is new, we’ll need to do the chmod +x example3.py once, after we create this file. Then,

when we run this progam, we see the following.

$./example3.py
543.75

7.2. The Assignment Statement 73

Building Skills in Python, Release 2.6.5

7.2.2 Augmented Assignment

Any of the usual arithmetic operations can be combined with assignment to create an augmented assignment
statement.

For example, look at this augmented assignment statement:

a += v

This statement is a shorthand that means the same thing as the following:
a=a+v

Here’s a larger example

portfolio.py

#!/usr/bin/env python

Total wvalue of a portfolio made up of two blocks of stock
portfolio = 0

portfolio += 150 * 2 + 1/4.0

portfolio += 75 * 1 + 7/8.0

print portfolio

First, we’ll do the chmod +x portfolio.py on this file. Then, when we run this progam, we see the
following.

$./portfolio.py
376.125

The other basic math operations can be used similarly, although the purpose gets obscure for some operations.
These lnClude L_=? L*=7’ L/=7’ L%=77 A&=77 AA=7’ A|=7, A<<=? and A>>=7.

)

Here’s a lengthy example. This is an extension of Craps Odds in Numeric Types and FExpressions.

In craps, the first roll of the dice is called the “come out roll”. This roll can be won immediately if the
number is 7 or 11. It can be lost immediately if the number is 2, 3 or 12. All of the remaining numbers will
establish a point and the game continues.

craps.py

#!/usr/bin/env python

Compute the odds of winning on the first roll
win = 0

win += 6/36.0 # ways to roll a 7

win += 2/36.0 # ways to roll an 11

print "first roll win", win

Compute the odds of losing on the first roll
lose = 0

lose += 1/36.0 # ways to rToll 2

lose += 2/36.0 # ways to roll 3

lose += 1/36.0 # ways to roll 12

print "first roll lose", lose

Compute the odds of rolling a point number (4, 5, 6, 8, 9 or 10)

74 Chapter 7. Variables, Assignment and Input

Building Skills in Python, Release 2.6.5

point = 1 # odds must total to 1

point -= win # remove odds of winning

point -= lose # remove odds of losting

print "first roll establishes a point", point

There’s a 22.2% chance of winning, and a 11.1% chance of losing. What’s the chance of establishing a point?
One way is to figure that it’s what’s left after winning or loosing. The total of all probabilities always add
to 1. Subtract the odds of winning and the odds of losing and what’s left is the odds of setting a point.

Here’s another way to figure the odds of rolling 4, 5, 6, 8, 9 or 10.

point = 0O

point += 2%3/36.0 # ways to Toll 4 or 10
point += 2%4/36.0 # ways to roll 5 or 9
point += 2%5/36.0 # ways to rToll 6 or 8
print point

By the way, you can add the statement ‘print win + lose + point’ to confirm that these odds all add to
1. This means that we have defined all possible outcomes for the come out roll in craps.

Tip: Tracing Execution

We can trace the execution of a program by simply following the changes of value of all the variables in the
program.

We can step through the planned execution of our Python source statements, writing down the variables
and their values on a sheet of paper. From this, we can see the state of our calculation evolve.

When we encounter an assignment statement, we look on our paper for the variable. If we find the variable,
we put a line through the old value and write down the new value. If we don’t find the variable, we add it
to our page with the initial value.

Here’s our example from craps.py script through the first part of the script. The win variable was created
and set to ‘0’, then the value was replaced with ‘0.16’, and then replaced with ‘0.22. The lose variable
was then created and set to ‘0. This is what our trace looks like so far.

win: | 0.0 | 0.16 | 0.22
lose: | 0

Here’s our example when craps.py script is finished. We changed the variable lose several times. We also
added and changed the variable point.

win: 0.0 | 0.16 | 0.22
lose: 0.0 | 0.027 | 0.083 | 0.111
point: | 1.0 | 0.77 | 0.66

We can use this trace technique to understand what a program means and how it proceeds from its initial
state to its final state.

As with many things Python, there is some additional subtlety to assignment, but we’ll cover those topics
later. For example, multiple-assignment statement is something we’ll look into in more deeply in Tuples.

7.3 Input Functions

Python provides two simplistic built-in functions to accept input and set the value of variables. These are
not really suitable for a complete application, but will do for our initial explorations.

7.3. Input Functions 75

Building Skills in Python, Release 2.6.5

Typically, interactive programs which run on a desktop use a complete graphic user interface (GUI), often
written with the Tkinter module or the pyGTK module. Interactive programs which run over the Internet
use HTML forms.

The primitive interactions we’re showing with input () and raw_input () are only suitable for very simple
programs.

Important: Python 3.x
In Python 3, the raw_input () function will be renamed to input ().
The Python 2 input () function will be removed. It’s that useless.

Note that some IDE’s buffer the program’s output, making these functions appear to misbehave. For
example, if you use Komodo, you’ll need to use the “Run in a New Console” option. If you use BBEdit,
you’ll have to use the “Run in Terminal” option.

You can enhance these functions somewhat by including the statement ‘import readline’ This module
silently and automatically enhances these input functions to give the user the ability to scroll backwards and
reuse previous inputs.

You can also ‘import rlcompleter’. This module allows you to define sophisticated keyword auto-completion
for these functions.

7.3.1 The raw_input () Function

The first way to get interactive input is the raw_input () function. This function accepts a string parameter,
which is the user’s prompt, written to standard output. The next line available on standard input is returned
as the value of the function.

raw_input (/prompt))
If a prompt is present, it is written to sys.stdout.

Input is read from sys.stdin and returned as a string.

The raw_input () function reads from a file often called sys.stdin. When running from the command-line,
this will be the keyboard, and what you type will be echoed in the command window or Terminal window.
If you try, however, to run these examples from Textpad, you’ll see that Textpad doesn’t have any place for
you to type any input. In BBEdit, you’ll need to use the Run In Terminal item in the #! menu.

Here’s an example script that uses raw_input ().

rawdemo.py

#!/usr/bin/env python

show how raw_input works
a= raw_input("yes?")
print "you said", a

When we run this script from the shell prompt, it looks like the following.

MacBook-3:Examples slott$ python rawdemo.py
yes?why not?
you said why not?

1. This program begins by evaluating the raw_input () function. When raw_input () is applied to the
parameter of "yes?", it writes the prompt on standard output, and waits for a line of input.

76 Chapter 7. Variables, Assignment and Input

Building Skills in Python, Release 2.6.5

(a) We entered why not?.
(b) Once that line was complete, the input string is returned as the value of the function.
(¢) The raw_input () function’s value was assigned to the variable a.

2. The second statement printed that variable along with some text.

If we want numeric input, we must convert the resulting string to a number.

stock.py

#1/usr/bin/env python

Compute the wvalue of a block of stock
shares = int(raw_input("shares: "))

price = float(raw_input("dollars: "))
price += float(raw_input("eights: "))/8.0
print "value", shares * price

We’ll chmod +x stock.py this program; then we can run it as many times as we like to get results.

MacBook-3:Examples slott$./stock.py

shares: 150
dollars: 24
eights: 3

value 3656.25

The raw_input () mechanism is very limited. If the string returned by raw_input () is not suitable for use
by int (), an exception is raised and the program stops running. We’ll cover exception handling in detail in
FExceptions.
As a teaser, here’s what it looks like.
MacBook-5:Examples slott$ python stock.py
shares: a bunch
Traceback (most recent call last):
File "stock.py", line 3, in <module>

shares = int(raw_input("shares: "))
ValueError: invalid literal for int() with base 10: 'a bunch'

7.3.2 The input() Function

In addition to the raw_input () function, which returns the exact string of characters, there is the input ()
function. This applies the eval () function to the input, which will typically convert numeric input to the
appropriate objects.

Important: Python 3
This function will be removed. It’s best not to make use of it.

The value of the input () function is ‘eval(raw_input(prompt))’

7.3. Input Functions 77

Building Skills in Python, Release 2.6.5

7.4 Multiple Assignment Statement

The basic assignment statement can do more than assign the result of a single expression to a single variable.
The assignment satement can also assign multiple variables at one time.

The essential rule is that the left and right side must have the same number of elements.

For example, the following script has several examples of multiple assignment.

line.py

#!/usr/bin/env python

Compute line between two points.

xl,y1 = 2,3 # point one

x2,y2 = 6,8 # point two

m,b = float(yl-y2)/(x1-x2), yl-float(yl-y2)/(x1-x2)*x1
print "y=",m,"*x+",b

When we run this program, we get the following output

MacBook-3:Examples slott$./line.py
y = 1.25 *x+ 0.5

We set variables x1, y1, x2 and y2. Then we computed m and b from those four variables. Then we printed
the m and b.

The basic rule is that Python evaluates the entire right-hand side of the = statement. Then it matches
values with destinations on the left-hand side. If the lists are different lengths, an exception is raised and
the program stops.

Because of the complete evaluation of the right-hand side, the following construct works nicely to swap to
variables. This is often quite a bit more complicated in other languages.

a,b = 1,4
b,a = a,b
print a,b

We'll return to this in Tuples, where we’ll see additional uses for this feature.

7.5 The del Statement

An assignment statement creates or locates a variable and then assigns a new object to the variable.
This change in state is how our program advances from beginning to termination. Python also provides a
mechanism for removing variables, the del statement.

The del statement looks like this:

del object ¢ , ... >

Each object is any kind of Python object. Usually these are variables, but they can be functions, modules
or classes.

78 Chapter 7. Variables, Assignment and Input

Building Skills in Python, Release 2.6.5

The del statement works by unbinding the name, removing it from the set of names known to the Python
interpreter. If this variable was the last remaining reference to an object, the object will be removed from
memory. If, on the other hand, other variables still refer to this object, the object won’t be deleted.

C++ Comparison

Programmers familiar with C++ will be pleased to note that memory management is silent and au-
tomatic, making programs much more reliable with much less effort. This removal of objects is called
garbage collection, something that can be rather difficult to manage in larger applications. When
garbage collection is done incorrectly, it can lead to dangling references: a variable that refers to an
object that was deleted prematurely. Poorly designed garbage collection can also lead to memory leaks,
where unreferenced objects are not properly removed from memory. Because of the automated garbage
collection in Python, it suffers from none of these memory management problems.

The del statement is typically used only in rare, specialized cases. Ordinary namespace management and
garbage collection are generally sufficient for most purposes.

7.6 Interactive Mode Revisited

When we first looked at interactive Python in Command-Line Interaction we noted that Python executes
assignment statements silently, but prints the results of an expression statement. Consider the following
example.

>>> pi=355/113.0
>>> area=pi*2.2%*2
>>> area
15.205309734513278

The first two inputs are complete statements, so there is no response. The third input is just an expression,
so there is a response.

It isn’t obvious, but the value assigned to pi isn’t correct. Because we didn’t see anything displayed, we
didn’t get any feedback from our computation of pi.

Python, however, has a handy way to help us. When we type a simple expression in interactive Python, it
secretly assigns the result to a temporary variable named _. This isn’t a part of scripting, but is a handy
feature of an interactive session.

This comes in handy when exploring something rather complex. Consider this interactive session. We
evaluate a couple of expressions, each of which is implicitly assigned to _. We can then save the value of _
in a second variable with an easier-to-remember name, like pi or area.

>>> 335/113.0
2.9646017699115044
>>> 355/113.0
3.1415929203539825
>>> pi=_

>>> pi*2.2%%2
15.205309734513278
>>> area=_

>>> area
15.205309734513278

7.6. Interactive Mode Reuvisited 79

Building Skills in Python, Release 2.6.5

Note that we created a floating point object (2.964...), and Python secretly assigned this object to _. Then,
we computed a new floating point object (3.141...), which Python assigned to _.

What happened to the first float, 2.964...7 Python garbage-collected this object, removing it from memory.

The second float that we created (3.141) was assigned to _. We then assigned it to pi, also, giving us two
references to the object. When we computed another floating-point value (15.205...), this was assigned to _.

Does this mean our second float, 3.141... was garbage collected? No, it wasn’t garbage collected; it was still
referenced by the variable pi.

7.7 Variables, Assignment and Input Function Exercises

7.7.1 Variables and Assignment

1. Extend Previous Exercises. Rework the exercises in Numeric Types and Fxpressions.

Each of the previous exercises can be rewritten to use variables instead of expressions using only
constants. For example, if you want to tackle the Fahrenheit to Celsius problem, you might write
something like this:

#!/usr/bib/env python

Convert 8 C to F

C=8

F=32+C*(9./5.)

print "celsius",C,"fahrenheit",F

You’ll want to rewrite these exercises using variables to get ready to add input functions.
2. State Change. Is it true that all programs simply establish a state?

It can argued that a controller for a device (like a toaster or a cruise control) simply maintains a steady
state. The notion of state change as a program moves toward completion doesn’t apply because the
software is always on. Is this the case, or does the software controlling a device have internal state
changes?

For example, consider a toaster with a thermostat, a “browness” sensor and a single heating element.
What are the inputs? What are the outputs? Are there internal states while the toaster is making
toast?

7.7.2 Input Functions

Refer back to the exercises in Numeric Types and Expressions for formulas and other details. Each of these
can be rewritten to use variables and an input conversion. For example, if you want to tackle the Fahrenheit
to Celsius problem, you might write something like this:

C = raw_input('Celsius: ')
F = 32+C*(9./5.)
print "celsius",C,"fahrenheit",F

1. Stock Value. Input the number of shares, dollar price and number of 8th’s. From these three inputs,
compute the total dollar value of the block of stock.

2. Convert from |deg| C to |deg| F. Write a short program that will input °C and output °F. A second
program will input °F and output °C.

80 Chapter 7. Variables, Assignment and Input

Building Skills in Python, Release 2.6.5

3. Periodic Payment. Input the principal, annual percentage rate and number of payments. Compute
the monthly payment. Be sure to divide rate by 12 and multiple payments by 12.

4. Surface Air Consumption Rate. Write a short program will input the starting pressure, final
pressure, time and maximum depth. Compute and print the SACR.

A second program will input a SACR, starting pressure, final pressure and depth. It will print the
time at that depth, and the time at 10 feet more depth.

5. Wind Chill. Input a temperature and a wind speed. Output the wind chill.

6. Force from a Sail. Input the height of the sail and the length. The surface area is 1/2 xh x1. For
a wind speed of 25 MPH, compute the force on the sail. Small boat sails are 25-35 feet high and 6-10
feet long.

7.8 Variables and Assighment Style Notes

Spaces are used sparingly in Python. It is common to put spaces around the assignment operator. The
recommended style is

c = (£-32)%5/9

Do not take great pains to line up assignment operators vertically. The following has too much space, and
is hard to read, even though it is fussily aligned.

a =12
b = a*math.log(a)
aVeryLongVariable = 26
d =13

This is considered poor form because Python takes a lot of its look from natural languages and mathematics.
This kind of horizontal whitespace is hard to follow: it can get difficult to be sure which expression lines
up with which variable. Python programs are meant to be reasonably compact, more like reading a short
narrative paragraph or short mathematical formula than reading a page-sized UML diagram.

Variable names are often given as mixedCase; variable names typically begin with lower-case letters. The
lower_case_with_underscores style is also used, but is less popular.

In addition, the following special forms using leading or trailing underscores are recognized:

e single_trailing_underscore_: used to avoid conflicts with Python keywords. For example: ‘print_

= 42
e __double_leading_and_trailing_underscore__: used for special objects or attributes, e.g.
__init__, __dict__ or __file__. These names are reserved; do not use names like these in your

programs unless you specifically mean a particular built-in feature of Python.

o _single_underscore: means that the variable is “private”.

7.8. Variables and Assignment Style Notes 81

Building Skills in Python, Release 2.6.5

82

Chapter 7. Variables, Assignment and Input

CHAPTER

EIGHT

TRUTH, COMPARISON AND
CONDITIONAL PROCESSING

Truth, Comparison and the if Statement, pass and assert Statements.

This section leading up to the for and while statements, as well as the break and continue statements.

The elements of Python we’ve seen so far give us some powerful capabilities. We can write programs that
implement a wide variety of requirements. State change is not always as simple as the examples we’ve seen in
Variables, Assignment and Input. When we run a script, all of the statements are executed unconditionally.
Our programs can’t handle alternatives or conditions.

Python provides decision-making mechanisms similar to other programming languages. In Truth and Logic
we’ll look at truth, logic and the logic operators. The exercises that follow examine some subtleties of
Python’s evaluation rules. In Comparisons we’ll look at the comparison operators. Then, Conditional
Processing: the if Statement describes the if statement. In The assert Statement we’ll introduce a handy
diagnostic tool, the assert statement.

In the next chapter, Loops and Iterative Processing, we’ll look at looping constructs.

8.1 Truth and Logic

Many times the exact change in state that our program needs to make depends on a condition. A condition
is a Boolean expression; an expression that is either True or False. Generally conditions are on comparisons
among variables using the comparison operations.

We'll look at the essential definitions of truth, the logic operations and the comparison operations. This will
allow us to build conditions.

8.1.1 Truth

Python represents truth and falsity in a variety of ways.

e False. Also 0, the special value None, zero-length strings "", zero-length lists [, zero-length tuples
(), empty mappings {} are all treated as False.

e True. Anything else that is not equivalent to False.

We try to avoid depending on relatively obscure rules for determining True vs. False. We prefer to use
the two explicit keywords, True and False. Note that a previous version of Python didn’t have the boolean
literals, and some older open-source programs will define these values.

83

Building Skills in Python, Release 2.6.5

Python provides a factory function to collapse these various forms of truth into one of the two explicit
boolean objects.

bool (object)
Returns True when the argument object is one the values equivalent to truth, False otherwise.

8.1.2 Logic

Python provides three basic logic operators that work on this Boolean domain. Note that this Boolean
domain, with just two values, True and False, and these three operators form a complete algebraic system,
sometimes called Boolean algebra, after the mathemetician George Boole. The operators supported by
Python are not, and and or . We can fully define these operators with rule statements or truth tables.

This truth table shows the evaluation of not z.
print "x", "not x"

print True, not True
print False, not False

ble not x
True | False
False | True

This table shows the evaluation of x and y for all combination of True and False.

print "x", "y", "x and y"

print True, True, True and True
print True, False, True and False
print False, True, False and True
print False, False, False and False

X y x and y
True | True | True
True | False | False
False | True | False
False | False | False

An important feature of and is that it does not evaluate all of its parameters before it is applied. If the
left-hand side is False or one of the equivalent values, the right-hand side is not evaluated, and the left-hand
value is returned. We’ll look at some examples of this later.

For now, you can try things like the following.

print False and O
print O and False

This will show you that the first false value is what Python returns for and.

This table shows the evaluation of z or ¥ for all combination of True and False.

X y Xory
True | True | True
True | False | True
False | True | True
False | False | False

Parallel with the and operator, or does not evaluate the right-hand parameter if the left-hand side is True
or one of the equivalent values.

84 Chapter 8. Truth, Comparison and Conditional Processing

Building Skills in Python, Release 2.6.5

As a final note, and is a high priority operator (analogous to multiplication) and or is lower priority
(analogous to addition). When evaluating expressions like ‘a or b and c¢’, the and operation is evaluated
first, followed by the or operation.

8.1.3 Exercises

1. Logic Short-Cuts. We have several versions of false: False, 0, None, '', (), [] and {}. We'll cover
all of the more advanced versions of false in Data Structures. For each of the following, work out the
value according to the truth tables and the evaluation rules. Since each truth or false value is unique,
we can see which part of the expression was evaluated.

e ‘False and None’

e ‘0 and None or () and [1’

e ‘True and None or () and []’
e ‘0 or None and () or []’

e ‘True or Nonme and () or []’

e ‘1 or None and 'a' or 'b"’

8.2 Comparisons

We'll look at the basic comparison operators. We’ll also look at the partial evaluation rules of the logic
operators to show how we can build more useful expressions. Finally, we’ll look at floating-point equality
tests, which are sometimes done incorrectly.

8.2.1 Basic Comparisons

We compare values with the comparison operators. These correspond to the mathematical functions of <,
<, >, >, = and #. Conditional expressions are often built using the Python comparison operators: ‘<’, ‘<=",
>’ ¢>=" ‘==" and ‘!=’ for less than, less than or equal to, greater than, greater than or equal to, equal to
and not equal to.

>>> pl = 22./7.
>>> p2 = 355/113.
>>> pl
3.1428571428571428
>>> p2
3.1415929203539825
>>> p1 < p2

False

>>> p2 >= p2

True

When applying a comparison operator, we see a number of steps.
1. Evaluate both argument values.
2. Apply the comparison to create a boolean result.

(a) Convert both parameters to the same type. Numbers are converted to progressively longer types:
plain integer to long integer to float to complex.

8.2. Comparisons 85

Building Skills in Python, Release 2.6.5

(b) Do the comparison.
(¢) Return True or False.

We call out these three steps explicitly because there are some subtleties in comparison among unlike types of
data; we’ll come to this later when we cover sequences, mappings and classes in Data Structures. Generally,
it doesn’t make sense to compare unlike types of data. After all, you can’t ask “Which is larger, the Empire
State Building or the color green?”

Comparisons can be combined in Python, unlike most other programming languages. We can ask: ‘0 <= a
< 6’ which has the usual mathematical meaning. We're not forced to use the longer form: ‘0 <= a and a
< 6.

This is useful when a is actually some complex expression that we’d rather not repeat.

Here is an example.

>>> 3 < pl <3.2

True

>>> 3 < pl and p1 < 3.2
True

Note that the preceding example had a mixture of integers and floating-point numbers. The integers were
coerced to floating-point in order to evaluate the expressions.

8.2.2 Partial Evaluation

We can combine the logic operators, comparisons and math. This allows us to use comparisons and logic to
prevent common mathematical blunders like attempting to divide by zero, or attempting to take the square
root of a negative number.

For example, let’s start with this program that will figure the average of 95, 125 and 132.

sum = 95 + 125 + 132
count = 3
average = float(sum)/count
print average

Initially, we set the variables sum and count . Then we compute the average using sum and count.

Assume that the statement that computes the average (‘average=...’) is part of a long and complex
program. Sometimes that long program will try to compute the average of no numbers at all. This has the
same effect as the following short example.

sum, count = 0, O
average = float(sum)/count
print average

In the rare case that we have no numbers to average we don’t want to crash when we foolishly attempt to
divide by zero. We’d prefer to have some more graceful behavior.

Recall from Truth and Logic that the and operator doesn’t evaluate the right-hand side unless the left-hand
side is True. Stated the other way, the and operator only evaluates the right side if the left side is True.
We can guard the division like this:

average = count != 0 and sum/count
print average

86 Chapter 8. Truth, Comparison and Conditional Processing

Building Skills in Python, Release 2.6.5

This is an example that can simplify certain kinds of complex processing. If the count is non-zero, the left
side is true and the right side must be checked. If the count is zero, the left side is False, the result of the
complete and operation is False.

This is a consequence of the meaning of the word and. The expression a and b means that a is true as well
as b is true. If a is false, the value of b doesn’t really matter, since the whole expression is clearly false.
A similar analysis holds for the word or. The expression a or b means that one of the two is true; it also
means that neither of the two is false. If a is true, then the value of b doesn’t change the truth of the whole
expression.

The statement “It’s cold and rainy” is completely false when it is warm; rain doesn’t matter to falsifying
the whole statement. Similarly, “I’'m stopping for coffee or a newspaper” is true if I've stopped for coffee,
irrespective of whether or not I got a newspaper.

8.2.3 Floating-Point Comparisons

Exact equality between floating-point numbers is a dangerous concept. After a lengthy computation, round-
off errors in floating point numbers may have infinitesimally small differences. The answers are close enough
to equal for all practical purposes, but every single one of the 64 bits may not be identical.

The following technique is the appropriate way to do floating point comparisons.

abs (a-b)<0.0001

Rather than ask if the two floating point values are the same, we ask if they’re close enough to be considered
the same. For example, run the following tiny program.

floatequal.py

#!/usr/bin/env python

Are two floating point values really completely equal?
a,b = 1/3.0, .1/.3

print a,b,a==b

print abs(a-b)<0.00001

When we run this program, we get the following output

$ python floatequal.py
0.333333333333 0.333333333333 False
True

The two values appear the same when printed. Yet, on most platforms, the == test returns False. They
are not precisely the same. This is a consequence of representing real numbers with only a finite amount of
binary precision. Certain repeating decimals get truncated, and these truncation errors accumulate in our
calculations.

There are ways to avoid this problem; one part of this avoidance is to do the algebra necessary to postpone
doing division operations. Division introduces the largest number erroneous bits onto the trailing edge of
our numbers. The other part of avoiding the problem is never to compare floating point numbers for exact
equality.

8.2. Comparisons 87

Building Skills in Python, Release 2.6.5

8.3 Conditional Processing: the if Statement

Many times the program’s exact change in state depends on a condition. Conditional processing is done by
setting statements apart in suites with conditions attached to the suites. The Python syntax for this is an
if statement.

8.3.1 The if Statement

The basic form of an if statement provides a condition and a suite of statements that are executed when the
condition is true. It looks like this:

if expression :
suite

The suite is an indented block of statements. Any statement is allowed in the block, including indented if
statements. You can use either tabs or spaces for indentation. The usual style is four spaces.

This is our first compound statement. See Python Syntax Rules for some additional guidance on syntax for
compound statements.

The if statement evaluates the condition expression first. When the result is True, the suite of statements
is executed. Otherwise the suite is skipped.

For example, if two dice show a total of 7 or 11, the throw is a winner. In the following snippet, d1 and d2
are two dice values that range from 1 to 6.

if d1+d2 == 7 or di1+d2 == 11:
print "winner", di1+d2

Here we have a typically complex expression. The or operator evaluates the left side first. Python evaluates
and applies the high-precendence arithmetic operator before the lower-precendence comparison operator. If
the left side is true (d1 + d2 is 7), the or expression is true, and the suite is executed. If the left side is
false, then the right side is evaluated. If it is true (d1 + d2 is 11), the or expression is true, and the suite is
executed. Otherwise, the suite is skipped.

88 Chapter 8. Truth, Comparison and Conditional Processing

Building Skills in Python, Release 2.6.5

Python Syntax Rules

Python syntax is very simple. We've already seen how basic expressions and some simple statements
are formatted. Here are some syntax rules and examples. Look at Syntax Formalities for an overview
of the lexical rules.

Compound statements, including if, while, for, have an indented suite of statements. You have a
number of choices for indentation; you can use tab characters or spaces. While there is a lot of
flexibility, the most important thing is to be consistent.

Further, the recommendation is to use spaces. That’s what we’ll show. The generally accepted way to
format Python code is to set your editor to replace tabs with 4 spaces.

We'll show an example with spaces, shown via .

a=0

if ,a==0:
uuuuprint,"agis zero"
else:
uuuuprint,"a is notzero"
if a%2==0:
uuuuprint"ais even"
else:

UuuuprintuuauiSuOdd"
IDLE uses four spaces for indentation automatically. If you're using another editor, you can set it to
use four spaces, also.

8.3.2 The elif Clause

Often there are several conditions that need to be handled. This is done by adding elif clauses. This is short
for “else-if”. We can add an unlimited number of elif clauses. The elif clause has almost the same syntax
as the if clause.

elif expression :
suite

Here is a somewhat more complete rule for the come out roll in a game of craps:

result= None

if di1+d2 == 7 or di1+d2 == 11:
result= "winner"

elif d1+d2 == 2 or di1+d2 == 3 or di1+d2 == 12:
result= "loser"

print result

First, we checked the condition for winning; if the first condition is true, the first suite is executed and the
entire if statement is complete. If the first condition is false, then the second condition is tested. If that
condition is true, the second suite is executed, and the entire if statement is complete. If neither condition
is true, the if statement has no effect.

8.3.3 The else Clause

Python also gives us the capability to put a “catch-all” suite at the end for all other conditions. This is done
by adding an else clause. The else clause has the following syntax.

8.3. Conditional Processing: the if Statement 89

Building Skills in Python, Release 2.6.5

else:
suite

Here’s the complete come-out roll rule, assuming two values d1 and d2.

point= None
if d1+d2 == 7 or di1+d2 == 11:
print "winner"
elif di1+d2 == 2 or di1+d2 == 3 or di1+d2 == 12:
print "loser"
else:
point= di1+d2
print '"point is", point

Here, we use the else: suite to handle all of the other possible rolls. There are six different values (4, 5, 6,
8, 9, or 10), a tedious typing exercise if done using or. We summarize this with the else: clause.

While handy in one respect, this else: clause is also dangerous. By not explicitly stating the condition, it is
possible to overlook simple logic errors.

Consider the following complete if statement that checks for a winner on a field bet. A field bet wins on 2,
3,4,9, 10, 11 or 12. The payout odds are different on 2 and 12.

outcome= 0
if d1+d2 == 2 or di1+d2 == 12:
outcome= 2
print "field pays 2:1"
elif di1+d2==4 or d1+d2==9 or di1+d2==10 or di+d2==11:
outcome= 1
print "field pays even money"
else:
outcome= -1
print "field loses"

Here we test for 2 and 12 in the first clause; we test for 4, 9, 10 and 11 in the second. It’s not obvious that
a roll of 3 is missing from the even money pay out. This fragment incorrectly treats 3, 5, 6, 7 and 8 alike in
the else:. While the else: clause is used commonly as a catch-all, a more proper use for else: is to raise an
exception because a condition was not matched by any of the if or elif clauses.

8.4 The pass Statement

The pass statement does nothing. Sometimes we need a placeholder to fill the syntactic requirements of a
compound statement. We use the pass statement to fill in the required suite of statements.

The syntax is trivial.
pass

Here’s an example of using the pass statement.

if n%2 == 0:
pass # Ignore even wvalues
else:
count += 1 # Count the odd wvalues

90 Chapter 8. Truth, Comparison and Conditional Processing

Building Skills in Python, Release 2.6.5

Yes, technically, we can invert the logic in the if-clause. However, sometimes it is more clear to provide the
explicit “do nothing” than to determine the inverse of the condition in the if statement.

As programs grow and evolve, having a pass statement can be a handy reminder of places where a program
can be expanded.

Also, when we come to class declarations in Data + Processing = Objects, we’ll see one other use for the
pass statement.

8.5 The assert Statement

An assertion is a condition that we’re claiming should be true at this point in the program. Typically,
it summarizes the state of the program’s variables. Assertions can help explain the relationships among
variables, review what has happened so far in the program, and show that if statements and for or while
loops have the desired effect.

When a program is correct, all of the assertions are true no matter what inputs are provided. When a
program has an error, at least one assertion winds up false for some combination of inputs.

Python directly supports assertions through an assert statement. There are two forms:

assert condition

assert condition , expression

If the condition is False, the program is in error; this statement raises an AssertionError exception.
If the condition is True, the program is correct, this statement does nothing more.

If the second form of the statement is used, and an expression is given, an exception is raised using the value
of the expression. We’ll cover exceptions in detail in Ezceptions. If the expression is a string, it becomes an
the value associated with the AssertionError exception.

Note: Additional Features

There is an even more advanced feature of the assert statement. If the expression evaluates to a class, that
class is used instead of AssertionError. This is not widely used, and depends on elements of the language
we haven’t covered yet.

Here’s a typical example:

max= 0

if a < b: max= b

if b < a: max= a

assert (max == a or max == b) and max >= a and max >= b

If the assertion condition is true, the program continues. If the assertion condition is false, the program
raises an AssertionError exception and stops, showing the line where the problem was found.

Run this program with a equal to b and not equal to zero; it will raise the AssertionError exception.
Clearly, the if statements don’t set max to the largest of a and b when a = b . There is a problem in the if
statements, and the presence of the problem is revealed by the assertion.

8.5. The assert Statement 91

Building Skills in Python, Release 2.6.5

8.6 The if-else Operator

There are situations where an expression involves a simple condition and a full-sized if statement is distracting
syntatic overkill. Python has a handy logic operator that evalutes a condition, then returns either of two
values depending on that condition.

“Ternary Operator”

Most arithmetic and logic operators have either one or two values. An operation that applies to a single
value is called unary. For example ‘-a’ and ‘abs(b)’ are examples of unary operations: unary negation
and unary absolute value. An operation that applies to two values is called binary. For example, ‘a*b’
shows the binary multiplication operator.

The if-else operator trinary (or “ternary”) It involves a conditional expression and two alternative
expressions. Consequently, it doesn’t use a single special character, but uses two keywords: ‘if’ and
‘else’.

Some folks will mistakenly call it the ternary operator as if this is the only possible ternary operator.

The basic form of the operator is
expression if condition else expression

Python evaluates the condition — in the middle — first. If the condition is True, then the left-hand expression
is evaluated, and that’s the value of the operation. If the condition is False, then the right-hand expression
is evaluated, and that’s the value of the operation.

Note that the condition is always evaluated. Only one of the other two expressions is evaluated, making this
a kind of short-cut operator like and and or.

Here are a couple of examples.

average = sum/count if count != O else None

0ddSum = 0oddSum + (n if n % 2 == 1 else 0)

The intent is to have an English-like reading of the statement. “The average is the sum divided by the count
if the count is non-zero; else the average is None”.

The wordy alterative to the first example is the following.

if count != O:
average= sum/count
else:
average= None

This seems like three extra lines of code to prevent an error in the rare situation of there being no values to
average.

Similarly, the wordy version of the second example is the following;:

ifn’ 2 ==
pass
else:
oddSum = oddSum + n

92 Chapter 8. Truth, Comparison and Conditional Processing

Building Skills in Python, Release 2.6.5

For this second example, the original statement registered our intent very clearly: we were summing the
odd values. The long-winded if-statement tends to obscure our goal by making it just one branch of the
if-statement.

8.7 Condition Exercises

. Develop an “or-guard”. In the example above we showed the “and-guard” pattern:

average = count != 0 and float(sum)/count

Develop a similar technique using or.
Compare this with the if-else operator.

Come Out Win. Assume d1 and d2 have the numbers on two dice. Assume this is the come out
roll in Craps. Write the expression for winning (7 or 11). Write the expression for losing (2, 3 or 12).
Write the expression for a point (4, 5, 6, 8, 9 or 10).

Field Win. Assume d1 and d2 have the numbers on 2 dice. The field pays on 2, 3, 4, 9, 10, 11 or 12.
Actually there are two conditions: 2 and 12 pay at one set of odds (2:1) and the other 5 numbers pay
at even money. Write two two conditions under which the field pays.

Hardways. Assume d1 and d2 have the numbers on 2 dice. A hardways proposition is 4, 6, 8, or 10
with both dice having the same value. It’s the hard way to get the number. A hard 4, for instance is
‘d1+d2 == 4 and d1 == d2’ Aneasy 4 is ‘d1+d2 == 4 and 41 != d2

You win a hardways bet if you get the number the hard way. You lose if you get the number the easy
way or you get a seven. Write the winning and losing condition for one of the four hard ways bets.

Sort Three Numbers. This is an exercise in constructing if-statements. Using only simple variables
and if statements, you should be able to get this to work; a loop is not needed.

Given 3 numbers (X, Y, Z), assign variables x, y, z so that z <y < z and x , y, and z are from X, Y,
and Z. Use only a series of if-statements and assignment statements.

Hint. You must define the conditions under which you choose between x < X, x «+ Y or x «+ Z. You
will do a similar analysis for assigning values to y and z. Note that your analysis for setting y will
depend on the value set for x; similarly, your analysis for setting z will depend on values set for x and
y.

Come Out Roll. Accept d1 and d2 as input. First, check to see that they are in the proper range
for dice. If not, print a message.

Otherwise, determine the outcome if this is the come out roll. If the sum is 7 or 11, print winner. If
the sum is 2, 3 or 12, print loser. Otherwise print the point.

Field Roll. Accept d1 and d2 as input. First, check to see that they are in the proper range for dice.
If not, print a message.

Otherwise, check for any field bet pay out. A roll of 2 or 12 pays 2:1, print “pays 2”; 3, 4, 9, 10 and
11 pays 1:1, print “pays even”; everything else loses, print “loses”

Hardways Roll. Accept d1 and d2 as input. First, check to see that they are in the proper range for
dice. If not, print a message.

Otherwise, check for a hard ways bet pay out. Hard 4 and 10 pays 7:1; Hard 6 and 8 pay 9:1, easy 4,
6, 8 or 10, or any 7 loses. Everything else, the bet still stands.

8.7.

Condition Exercises 93

Building Skills in Python, Release 2.6.5

9. Partial Evaluation. This partial evaluation of the and and or operators appears to violate the
evaluate-apply principle espoused in The Fuvaluate-Apply Cycle. Instead of evaluating all parameters,
these operators seem to evaluate only the left-hand parameter before they are applied. Is this special
case a problem? Can these operators be removed from the language, and replaced with the simple if
-statement? What are the consequences of removing the short-circuit logic operators?

8.8 Condition Style Notes

Now that we have introduced compound statements, you may need to make an adjustment to your editor.
Set your editor to use spaces instead of tabs. Most Python is typed using four spaces instead of the ASCII
tab character ("I). Most editors can be set so that when you hit the Tab key on your keyboard, the editor
inserts four spaces. IDLE is set up this way by default. A good editor will follow the indents so that once
you indent, the next line is automatically indented.

We'll show the spaces explicitly as in the following fragment.

ifa >=_b:
[INTINTINTIN) (I T=
ifub|_|>=|_,a .

Luuum =gb

This is has typical spacing for a piece of Python programming.

Note that the colon (‘:’) immediately follows the condition. This is the usual format, and is consistent with
the way natural languages (like English) are formatted.

These if statements can be collapsed to one-liners, in which case they would look like this:

ifpa >= b: m = a
if b >=pa: m =b

It helps to limit your lines to 80 positions or less. You may need to break long statements with a \\ at
the end of a line. Also, parenthesized expressions can be continued onto the next line without a \\. Some
programmers will put in extra ()’s just to make line breaks neat.

While spaces are used sparingly, they are always used to set off comparison operators and boolean operators.
Other mathematical operators may or may not be set off with spaces. This makes the comparisons stand
out in an if statement or while statement.

ifub**2_4*a*Cu<u0:
uuuuprint,"noroot"

This shows the space around the comparison, but not the other arithmetic operators.

94 Chapter 8. Truth, Comparison and Conditional Processing

CHAPTER

NINE

LOOPS AND ITERATIVE
PROCESSING

The for, while, break, continue Statements

The elements of Python we’ve seen so far give us some powerful capabilities. We can write programs that
implement a wide variety of requirements. State change is not always as simple as the examples we’ve seen
in Variables, Assignment and Input.

In Truth, Comparison and Conditional Processing we saw how to make our programs handle handle alter-
natives or conditions. In this section, we’ll see how to write programs which do their processing “for all”
pieces of data. For example, when we compute an average, we compute a sum for all of the values.

Python provides iteration (sometimes called looping) similar to other programming languages. In Iterative
Processing: For All and There Fxists we’'ll describe the semantics of iterative statements in general. In
Iterative Processing: The for Statement we’ll describe the for statement. We'll cover the while statements
in [terative Processing: The while Statement.

This is followed by some of the most interesting and challenging short exercises in this book. We’ll add
some iteration control in More Iteration Control: break and continue, describing the break and continue
statements. We’ll conclude this chapter with a digression on the correct ways to develop iterative and
conditional statements in A Digression.

9.1 Iterative Processing: For All and There Exists

There are two common qualifiers used for logical conditions. These are sometimes called the universal and
existential qualifiers. We can call the “for all” and “there exists”. We can also call them the “all” and “any”
qualifiers.

A program may involve a state that is best described as a “for all” state, where a number of repetitions of
some task are required. For example, if we were to write a program to simulate 100 rolls of two dice, the
terminating condition for our program would be that we had done the simulation for all 100 rolls.

Similary, we may have a condition that looks for existence of a single example. We might want to know
if a file contains a line with “ERROR” in it. In this case, we want to write a program with a terminating
condition would be that there exists an error line in the log file.

It turns out that All and Any are logical inverses. We can always rework a “for any” condition to be a
“for all” condition. A program that determines if there exists an error line is the same as a program that
determines that all lines are not error lines.

95

Building Skills in Python, Release 2.6.5

Any time we have a “for all” or “for any” condition, we have an iteration: we will be iterating through the set
of values, evaluating the condition. We have a choice of two Python statements for expressing this iteration.
One is the for statement and the other is the while statement.

9.2 Iterative Processing: The for Statement

The simplest for statement looks like this:

for variable in iterable :
suite

The suite is an indented block of statements. Any statement is allowed in the block, including indented for
statements.

The wvariable is a variable name. The suite will be executed iteratively with the variable set to each of the
values in the given iterable. Typically, the suite will use the variable, expecting it to have a distinct value
on each pass.

There are a number of ways of creating the necessary iterable collection of values. The most common is to
use the range () function to generate a suitable list. We can also create the list manually, using a sequence
display; we’ll show some examples here. We’ll return to the details of sequences in Sequences: Strings, Tuples
and Lists.

The range () function has 3 forms:
e ‘range(x)’ generates z distinct values, from 0 to z-1, incrementing by 1.
Mathematicians describe this as a “half-open interval” and write it [0,).
o ‘range(x, y)’ generates y — x distinct values from z to y-1, incrementing by 1. [z,y).

o ‘range(x, y, z)’ generates values from z to y-1, incrementing by z: [x,z + z, 2 + 22, ..., + kz < y],
for some integer k.

A sequence display looks like this: ‘[**]’

expression { , ...)

It’s a list of expressions, usually simply numbers, separated by commas. The square brackets are essential
for marking a sequence.

Here are some examples.

for i in range(6):
print i+l

This first example uses range () to create a sequence of 6 values from 0 to just before 6. The for statement
iterates through the sequence, assigning each value to the local variable i. The print statement has an
expression that adds one to i and prints the resulting value.

for j in range(1,7):
print j

This second example uses the range() to create a sequence of 6 values from 1 to just before 7. The for
statement iterates through the sequence, assigning each value to the local variable j . The print statement
prints the value.

96 Chapter 9. Loops and lterative Processing

Building Skills in Python, Release 2.6.5

for o in range(1,36,2):
print o

This example uses range () to create a sequence of 36/2=18 values from 1 to just before 36 stepping by 2.
This will be a list of odd values from 1 to 35. The for statement iterates through the sequence, assigning
each value to the local variable o. The print statement prints all 18 values.

for r in [1,3,5,7,9,12,14,16,18,19,21,23,25,27,30,32,34,36] :
print r, "red"

This example uses an explicit sequence of values. These are all of the red numbers on a standard roulette
wheel. It then iterates through the sequence, assigning each value to the local variable r. The print
statement prints all 18 values followed by the word “red”.

Here’s a more complex example, showing nested for statements. This enumerates all the 36 outcomes of

rolling two dice.

for d1 in range(6):
for d2 in range(6):
print di+1,d2+1,'=',d1+d2+2

1. The outer for statement uses range() to create a sequence of 6 values, and iterates through the
sequence, assigning each value to the local variable d1.

2. For each value of d1, the inner loop creates a sequence of 6 values, and iterates through that sequence,
assigning each value to d2.

3. The print statement will be executed 36 times.
Here’s the example alluded to earlier, which does 100 simulations of rolling two dice.
import random
for i in range(100):
d1= random.randrange(6)+1

d2= random.randrange(6)+1
print di+d2

1. The for statement uses range() to create a sequence of 100 values, assigns each value to the local
variable i.

Note that the suite of statements never actually uses the value of i. The value of i marks the state
changes until the loop is complete, but isn’t used for anything else.

2. For each value of i, two values are created, d1 and d42.
3. The sum of d1 and d2 is printed.

There are a number of more advanced forms of the for statement, which we’ll cover in the section on
sequences in Sequences: Strings, Tuples and Lists.

9.3 Iterative Processing: The while Statement

The while statement looks like this:

while expression :
suite

9.3. Iterative Processing: The while Statement 97

Building Skills in Python, Release 2.6.5

The suite is an indented block of statements. Any statement is allowed in the block, including indented
while statements.

As long as the expression is true, the suite is executed. This allows us to construct a suite that steps
through all of the necessary tasks to reach a terminating condition. It is important to note that the suite
of statements must include a change to at least one of the variables in the while expression. When it is
possible to execute the suite of statements without changing any of the variables in the while expression,
the loop will not terminate.

Let’s look at some examples.
t, s =1, 1
while t != O:
t, s=t+ 2, s+t
1. The loop is initialized with t and s each set to 1.
2. We specify that the loop continues while t # 9.

3. In the body of the loop, we increment t by 2, so that it will be an odd value; we increment s by t,
summing a sequence of odd values.

When this loop is done, t is 9, and s is the sum of odd numbers less than 9: 1+3+5+7. Also note that the
while condition depends on t, so changing t is absolutely critical in the body of the loop.

Here’s a more complex example. This sums 100 dice rolls to compute an average.
s, r=20,0
while r != 100:
d1,d2=random.randrange(6)+1,random.randrange (6)+1
s,r = s + di+d2, r + 1
print s/r

1. We initialize the loop with s and r both set to zero.

2. The while statement specifies that during the loop r will not be 100; when the loop is done, r will be
100.

3. The body of the loop sets d1 and d2 to random numbers; it increments s by the sum of those dice,
and it increments r by 1.

When the loop is over, s will be the sum of 100 rolls of two dice. When we print, ‘s/r’ we print the average
rolled on two dice. The loop condition depends on r, so each trip through the loop must update r.

9.4 More lteration Control: break and continue

Python offers several statements for more subtle loop control. The point of these statements is to permit
two common simplifications of a loop. In each case, these statements can be replaced with if statements;
however, those if statement versions might be considered rather complex for expressing some fairly common
situations.

The break statement terminates a loop prematurely.

The syntax is trivial:

break

98 Chapter 9. Loops and lterative Processing

Building Skills in Python, Release 2.6.5

A break statement is always found within an if statement within the body of a for or while loop. A break
statement is typically used when the terminating condition is too complex to write as an expression in the
while clause of a loop. A break statement is also used when a for loop must be abandoned before the end
of the sequence has been reached.

The coninue statement skips the rest of a loop’s indented suite.

The syntax is trivial:

continue

A continue statements is always found within an if statement within a for or while loop. The continue
statement is used instead of deeply nested else clauses.

Here’s an example that has a complex break condition. We are going to see if we get six odd numbers in a
row, or spin the roulette wheel 100 times.

We'll look at this in some depth because it pulls a number of features together in one program. This program
shows both break and continue constructs. Most programs can actually be simplified by eliminating the
break and continue statements. In this case, we didn’t simplify, just to show how the statements are used.

Note that we have a two part terminating condition: 100 spins or six odd numbers in a row. The hundred
spins is relatively easy to define using the range () function. The six odd numbers in a row requires testing
and counting and then, possibly, ending the loop. The overall ending condition for the loop, then, is the
number of spins is 100 or the count of odd numbers in a row is six.

sixodd.py

from __future__ import print_function
import random
oddCount= 0
for s in range(100):
spinCount= s
n= random.randrange (38)
Zero
if n == 0 or n == 37: # treat 37 as 00
oddCount = 0

continue
0dd
if nj2 == 1:
oddCount += 1
if oddCount == 6: break
continue
Even
assert n%2 == 0 and 0 < n <= 36

oddCount = 0
print (oddCount, spinCount)

1. We import the print_function module to allow use of the print() function intead of the print
statement.
2. We import the random module, so that we can generate a random sequence of spins of a roulette wheel.

3. We initialize oddCount, our count of odd numbers seen in a row. It starts at zero, because we haven’t
seen any add numbers yet.

4. The for statement will assign 100 different values to s, such that 0 < s < 100. This will control our
experiment to do 100 spins of the wheel.

9.4. More lteration Control: break and continue 99

Building Skills in Python, Release 2.6.5

5. We save the current value of s in a variable called spinCount, setting up part of our post condition

for this loop. We need to know how many spins were done, since one of the exit conditions is that we
did 100 spins and never saw six odd values in a row. This “never saw six in a row” exit condition is
handled by the for statement itself.

We'll treat 37 as if it were 00, which is like zero. In Roulette, these two numbers are neither even nor
odd. The oddCount is set to zero, and the loop is continued. This continue statement resumes loop
with the next value of s. It restarts processing at the top of the for statement suite.

7. We check the value of oddCount to see if it has reached six. If it has, one of the exit conditions is

satisfied, and we can break out of the loop entirely. We use the break statement will stop executing
statements in the suite of the for statement. If oddCount is not six, we don’t break out of the loop,
we use the continue statement to restart the for statement statement suite from the top with a new
value for s.

8. We threw in an assert statement (see the next section, The assert Statement for more information) to

claim that the spin, n, is even and not 0 or 37. This is kind of a safety net. If either of the preceding if
statements were incorrect, or a continue statement was omitted, this statement would uncover that
fact. We could do this with another if statement, but we wanted to introduce the assert statement.

At the end of the loop, spinCount is the number of spins and oddCount is the most recent count of odd
numbers in a row. Either oddCount is six or spinCount is 99. When spinCount is 99, that means that spins
0 through 99 were examined; there are 100 different numbers between 0 and 99.

9.5 Iteration Exercises

1. Greatest Common Divisor. The greatest common divisor is the largest number which will evenly

divide two other numbers. Examples: GCD(5, 10) = 5, the largest number that evenly divides 5
and 10. GCD(21, 28) = 7, the largest number that divides 21 and 28. GCD’s are used to reduce
fractions. Once you have the GCD of the numerator and denominator, they can both be divided by
the GCD to reduce the fraction to simplest form. 21/28 reduces to 3/4.

Greatest Common Divisor of two integers, p and g

Loop. Loop until p = gq.

Swap. If p < ¢ then swap p and ¢, p = q.

Subtract. If p > ¢ then subtract ¢ from p, p — p —gq.
Result. Print p

Extracting the Square Root. This is a procedure for approximating the square root. It works by
dividing the interval which contains the square root in half. Initially, we know the square root of the
number is somewhere between 0 and the number. We locate a value in the middle of this interval and
determine of the square root is more or less than this midpoint. We continually divide the intervals in
half until we arrive at an interval which is small enough and contains the square root. If the interval
is only 0.001 in width, then we have the square root accurate to 0.001

Square Root of a number, n

Two Initial Guesses.

100

Chapter 9. Loops and lterative Processing

Building Skills in Python, Release 2.6.5

g1 <0
g2 <—n
At this point, g1 X g1 —n <0< gs X g — n.
Loop. Loop until |g1 x g1 — n|+n < 0.001.
Midpoint. mid — (g1 + g2) + 2
Midpoint Squared vs. Number. cmp < mid x mid —n
Which Interval?
if emp < 0 then g, < mid.
if emp > 0 then g, «— mid.
if emp = 0, mid is the exact answer!
Result. Print ¢;

Sort Four Numbers. This is a challenging exercise in if-statement construction. For some additional
insight, see [Dijkstra76], page 61.

Given 4 numbers (W, X, Y, Z)
Assign variables w, %, y, z so that w <z <y < z and w, %, y, z are from W, X, Y, and Z.

Do not use an array. One way to guarantee the second part of the above is to initialize w, x, y, z to
W, X, Y, Z, and then use swapping to rearrange the variables.

Hint: There are only a limited combination of out-of-order conditions among four variables. You can
design a sequence of if statements, each of which fixes one of the out-of-order conditions. This sequence
of if statements can be put into a loop. Once all of the out-of-order conditions are fixed, the numbers
are in order, the loop can end.

Highest Power of 2. This can be used to determine how many bits are required to represent a
number. We want the highest power of 2 which is less than or equal to our target number. For
example 64 < 100 < 128. The highest power of 2° < 100 < 2°.

Given a number n, find a number p such that 27 < n < 2°+1,

This can be done with only addition and multiplication by 2. Multiplication by 2, but the way, can be
done with the ‘<<’ shift operator. Do not use the pow() function, or even the ‘x*’ operator, as these
are too slow for our purposes.

Consider using a variable ¢, which you keep equal to 2P. An initialization might be ‘p = 1’, ‘c = 2.
When you increment p by 1, you also double c.

Develop your own loop. This is actually quite challenging, even though the resulting program is tiny.
For additional insight, see [Gries81], page 147.

How Much Effort to Produce Software? The following equations are the basic COCOMO esti-
mating model, described in [Boehm81]. The input, K, is the number of 1000’s of lines of source; that
is total source lines divided by 1000. Development Effort, where K is the number of 1000’s of lines of
source. F is effort in staff-months.

E=24x K05

Development Cost, where F is effort in staff-months, R is the billing rate. C' is the cost in dollars
(assuming 152 working hours per staff-month)

C=FExRx152

9.5.

Iteration Exercises 101

Building Skills in Python, Release 2.6.5

Project Duration, where E is effort in staff-months. D is duration in calendar months.
D =25 x %38

Staffing, where E is effort in staff-months, D is duration in calendar months. S is the average staff
size.

S=—=
D
Evaluate these functions for projects which range in size from 8,000 lines (K = 8) to 64,000 lines (K
= 64) in steps of 8. Produce a table with lines of source, Effort, Duration, Cost and Staff size.

6. Wind Chill Table. Wind chill is used by meteorologists to describe the effect of cold and wind
combined. Given the wind speed in miles per hour, V, and the temperature in °F, T, the Wind
Chill, w, is given by the formula below. See Wind Chill in Numeric Types and Ezpressions for more
information.

35.74 4 0.6215 x T — 35.75 x (V16) 40.4275 x T x (V%16)

Wind speeds are for 0 to 40 mph, above 40, the difference in wind speed doesn’t have much practical
impact on how cold you feel.

Evaluate this for all values of V (wind speed) from 0 to 40 mph in steps of 5, and all values of T
(temperature) from -10 to 40 in steps of 5.

7. Celsius to Fahrenheit Conversion Tables. We’ll make two slightly different conversion tables.
For values of Celsius from -20 to +30 in steps of 5, produce the equivalent Fahrenheit temperature.
The following formula converts C (Celsius) to F (Fahrenheit).

212 — 32
22-32 &

F =32
+ 100

For values of Fahrenheit from -10 to 100 in steps of 5, produce the equivalent Celsius temperatures.
The following formula converts F (Fahrenheit) to C (Celsius).

100
= (F-32)x ———
C=F-32) X555

8. Dive Planning Table. Given a surface air consumption rate, ¢, and the starting, s, and final, f
pressure in the air tank, a diver can determine maximum depths and times for a dive. For more
information, see Surface Air Consumption Rate in Numeric Types and Erpressions. Accept ¢, s and
f from input, then evaluate the following for d from 30 to 120 in steps of 10. Print a table of ¢ and d.

For each diver, c is pretty constant, and can be anywhere from 10 to 20, use 15 for this example. Also,
s and f depend on the tank used, typical values are s =2500 and f =500.

| 83(s—)
c(d + 33)

9. Computing 7. Each of the following series compute increasingly accurate values of 7 (3.1415926...)

T 1,1 1 1 1
A T A A R Vi
. 1+ b b=+
6 22 32 42
k
o= 5 (&) e)
16 8k+1 8k+4 8k+5 8k+6

102 Chapter 9. Loops and lterative Processing

Building Skills in Python, Release 2.6.5

1 1 1.2 1-2-3

AT S ALt A
10. Computing e. A logarithm is a power of some base. When we use logarithms, we can effectively
multiply numbers using addition, and raise to powers using multiplication. Two Python built-in func-
tions are related to this: math.log() and math.exp() . Both of these compute what are called natural
logarithms, that is, logarithms where the base is e . This constant, e, is available in the math module,

and it has the following formal definition: Definition of e.

1
e= Y &

0<k<o0

For more information on the (X) operator, see Digression on The Sigma Operator.

The n! operator is “factorial”. Interestingly, it’s a post-fix operator, it comes after the value it applies
to.

nl=nxn—-1)xnNn—-2)xx1.
For example, 4! =4 x 3 x 2 x 1 = 24. By definition, 0! = 1.

If we add up the values é + % + % + % + .- we get the value of e. Clearly, when we get to about
1/10!, the fraction is so small it doesn’t contribute much to the total.

We can do this with two loops, an outer loop to sum up the % terms, and an inner loop to compute
the k!

However, if we have a temporary value of k!, then each time through the loop we can multiply this
temporary by k, and then add 1/temp to the sum.

You can test by comparing your results against math.e, e = 2.71828 or ‘math.exp(1.0)’.
11. Hailstone Numbers. For additional information, see [Banks02].
Start with a small number, n, 1 <n < 30.
There are two transformation rules that we will use:
e If n is odd, multiple by 3 and add 1 to create a new value for n.
o If n is even, divide by 2 to create a new value for n.

Perform a loop with these two transformation rules until you get to n = 1. You’ll note that when n =
1, you get a repeating sequence of 1, 4, 2, 1, 4, 2, ...

You can test for oddness using the % (remainder) operation. If ‘n % 2 == 1’ , the number is odd,
otherwise it is even.

The two interesting facts are the “path length”, the number of steps until you get to 1, and the
maximum value found during the process.

Tabulate the path lengths and maximum values for numbers 1..30. You’ll need an outer loop that
ranges from 1 to 30. You'll need an inner loop to perform the two steps for computing a new n until
n == 1; this inner loop will also count the number of steps and accumulate the maximum value seen
during the process.

Check: for 27, the path length is 111, and the maximum value is 9232.

9.6 Condition and Loops Style Notes

As additional syntax, the for and while statements permits an else clause. This is a suite of statements
that are executed when the loop terminates normally. This suite is skipped if the loop is terminated by a

9.6. Condition and Loops Style Notes 103

Building Skills in Python, Release 2.6.5

break statement. The else clause on a loop might be used for some post-loop cleanup. This is so unlike
other programming languages, that it is hard to justify using it.

An else clause always raises a small problem when it is used. It’s never perfectly clear what conditions lead
to execution of an else clause. The condition that applies has to be worked out from context. For instance,
in if statements, one explicitly states the exact condition for all of the if and elif clauses. The logical inverse
of this condition is assumed as the else condition. It is, unfortunately, left to the person reading the program
to work out what this condition actually is.

Similarly, the else clause of a while statement is the basic loop termination condition, with all of the
conditions on any break statements removed. The following kind of analysis can be used to work out the
condition under which the else clause is executed.

while not BB:

if C1: break

if C2: break
else:

assert BB and not C1 and not C2
assert BB or C1 or C2

Because this analysis can be difficult, it is best to avoid the use of else clauses in loop constructs.

9.7 A Digression

For those new to programming, here’s a short digression, adapted from chapter 8 of Edsger Dijkstra’s book,
A Discipline of Programming [Dijkstra76].

Let’s say we need to set a variable, m, to the larger of two input values, a and b. We start with a state
we could call “m undefined”. Then we want to execute a statement after which we are in a state of (m =
aorm=>)and m <aand m <b.

Clearly, we need to choose correctly between two different assignment statements. We need to do either
‘m=a’ or ‘m=b’. How do we make this choice? With a little logic, we can derive the condition by taking each
of these statement’s effects out of the desired end-state.

For the statement ‘m=a’ to be the right statement to use, we show the effect of the statement by replacing m
with the value a, and examining the end state: (a = a or a = b) and a < a and a < b. Removing the parts
that are obviously true, we're left with a < b. Therefore, the assignment ‘m=a’ is only useful when ‘a <= b’

For the statement m=b to be the right statement to establish the necessary condition, we do a similar
replacement of b for m and examine the end state: (b =a or b=">0) and b < a and b < b. Again, we remove
the parts that are obviously true and we're left with b < a. Therefore, the assignment ‘m=b’ is only useful

)

when ‘b <= a’
Each assignment statement can be “guarded” by an appropriate condition.

if a>=b: m=a
elif b>=a: m=b

Is the correct statement to set m to the larger of a or b.

Note that the hard part is establishing the post condition. Once we have that stated correctly, it’s relatively
easy to figure the basic kind of statement that might make some or all of the post condition true. Then we
do a little algebra to fill in any guards or loop conditions to make sure that only the correct statement is
executed.

Successful Loop Design. There are several considerations when using the while statement. This list is
taken from David Gries’, The Science of Programming [Gries81].

104 Chapter 9. Loops and lterative Processing

Building Skills in Python, Release 2.6.5

1. The body condition must be initialized properly.

2. At the end of the suite, the body condition is just as true as it was after initialization. This is called
the invariant , because it is always true during the loop.

3. When this body condition is true and the while condition is false, the loop will have completed properly.

4. When the while condition is true, there are more iterations left to do. If we wanted to, we could define
a mathematical function based on the current state that computes how many iterations are left to do;
this function must have a value greater than zero when the while condition is true.

5. Each time through the loop we change the state of our variables so that we are getting closer to making
the while condition false; we reduce the number of iterations left to do.

While these conditions seem overly complex for something so simple as a loop, many programming problems
arise from missing one of them.

Gries recommends putting comments around a loop showing the conditions before and after the loop. Since
Python provides the assert statement; this formalizes these comments into actual tests to be sure the
program is correct.

Designing a Loop. Let’s put a particular loop under the microscope. This is a small example, but shows
all of the steps to loop construction. We want to find the least power of 2 greater than or equal to some
number greater than 1, call it x. This power of 2 will tell us how many bits are required to represent x, for
example.

We can state this mathematically as looking for some number, n, such that 2"~ ! < 2 < 2. If x is a power
of 2, for example 64, we’d find 2. If x is another number, for example 66, we’d find 26 < 66 < 27, which is
64 < 66 < 128.

We can start to sketch our loop already.
assert x > 1

. initialize ...

. some loop ...
assert 2#*(n-1) < x <= 2%*n

We work out the initialization to make sure that the invariant condition of the loop is initially true. Since x
must be greater than or equal to 1, we can set n to 1. 2! =20 = 1 < 2. This will set things up to satisfy
rule 1 and 2.

assert x > 1
n= 1

. some loop ...
assert 2x*(n-1) < x <= 2%xn

In loops, there must be a condition on the body that is invariant, and a terminating condition that changes.
The terminating condition is written in the while clause. In this case, it is invariant (always true) that
2"~! < x. That means that the other part of our final condition is the part that changes.

assert x > 1

n= 1

while not (x <= 2%*n):
n=n + 1

9.7. A Digression 105

Building Skills in Python, Release 2.6.5

assert 2**(n-1) < x
assert 2*%*(n-1) < x <= 2%*n

The next to last step is to show that when the while condition is true, there are more than zero trips through
the loop possible. We know that x is finite and some power of 2 will satisfy this condition. There’s some n
such that n — 1 < logax < n, which limits the trips through the loop.

The final step is to show that each cycle through the loop reduces the trip count. We can argue that
increasing n gets us closer to the upper bound of logsx.

We should add this information on successful termination as comments in our loop.

106 Chapter 9. Loops and lterative Processing

CHAPTER

TEN

FUNCTIONS

The heart of programming is the evaluate-apply cycle, where function arguments are evaluated and then the
function is applied to those argument values. We’ll review this in Semantics.

In Function Definition: The def and return Statements we introduce the syntax for defining a function. In
Function Use, we’ll describe using a function we’ve defined.

Some languages make distinctions between varieties of functions, separating them into “functions” and
“subroutines”. We’ll visit this from a Python perspective in Function Varieties.

We'll look at some examples in Some Framples. We'll look at ways to use IDLE in Hacking Mode.

We introduce some of the alternate argument forms available for handling optional and keyword parameters
in More Function Definition Features.

Further sophistication in how Python handles parameters has to be deferred to Advanced Parameter Handling

For Functions, as it depends on a knowledge of dictionaries, introduced in Mappings and Dictionaries.

In Object Method Functions we will describe how to use method functions as a prelude to Data Structures;
real details on method functions are deferred until Classes.

We'll also defer examination of the yield statement until Iterators and Generators. The yield statement
creates a special kind of function, one that is most useful when processing complex data structures, something
we’ll look at in Data Structures.

10.1 Semantics

A function, in a mathematical sense, is often described as a mapping from domain values to range values.
Given a domain value, the function returns the matching range value.

If we think of the square root function, it maps a positive number, n, to another number, s, such that s = n.

If we think of multplication as a function, it maps a pair of values, ¢ and b, to a new value, ¢, such that
¢ = a x b. When we memorize multiplication tables, we are memorizing these mappings.

In Python, this narrow definition is somewhat relaxed. Python lets us create functions which do not need
a domain value, but create new objects. It also allows us to have functions that don’t return values, but
instead have some other effect, like reading user input, or creating a directory, or removing a file.

What We Provide. In Python, we create a new function by providing three pieces of information: the
name of the function, a list of zero or more variables, called parameters, with the domain of input values,
and a suite of statements that creates the output values. This definition is saved for later use. We’ll show
this first in Function Definition: The def and return Statements.

107

Building Skills in Python, Release 2.6.5

Typically, we create function definitions in script files because we don’t want to type them more than once.
Almost universally, we import a file with our function definitions so we can use them.

We use a function in an expression by following the function’s name with ‘(). The Python interpreter
evaluates the argument values in the ‘()’, then applies the function. We’ll show this second in Function Use.

Applying a function means that the interpreter first evaluates all of the argument values, then assigns the
argument values to the function parameter variables, and finally evaluates the suite of statements that are
the function’s body. In this body, any return statements define the resulting range value for the function.
For more information on this evaluate-apply cycle, see The Fvaluate-Apply Cycle.

Namespaces and Privacy. Note that the parameter variables used in the function definition, as well
as any variables in a function are private to that function’s suite of statements. This is a consequence of
the way Python puts all variables in a namespace. When a function is being evaluated, Python creates a
temporary namespace. This namespace is deleted when the function’s processing is complete. The namespace
associated with application of a function is different from the global namespace, and different from all other
function-body namespaces.

While you can change the standard namespace policy (see The global Statement) it generally will do you
more harm than good. A function’s interface is easiest to understand if it is only the parameters and return
values and nothing more. If all other variables are local, they can be safely ignored.

Terminology: argument and parameter. We have to make a firm distinction between an argument value,
an object that is created or updated during execution, and the defined parameter variable of a function. The
argument is the object used in particular application of a function; it may be referenced by other variables
or objects. The parameter is a variable name that is part of the function, and is a local variable within the
function body.

108 Chapter 10. Functions

Building Skills in Python, Release 2.6.5

The Evaluate-Apply Cycle

The evaluate-apply cycle shows how any programming language computes the value of an expression.
Consider the following expression:

math.sqrt(abs(b¥b-4xa*xc))

What does Python do?

For the purposes of analysis, we can restructure this from the various mathematical notation styles
to a single, uniform notation. We call this prefix notation, because all of the operations prefix their
operands. While useful for analysis, this is cumbersome to write for real programs.

math.sqrt(abs(sub(mul(b,b), mul(mul(4,a),c))))

We've replaced ‘x*y’ with ‘mul(x,y)’ , and replaced ‘x-y’ with ‘sub(x,y)’ . This allows us to more
clearly see how evaluate-apply works. Each part of the expression is now written as a function with one
or two arguments. First the arguments are evaluated, then the function is applied to those arguments.
In order for Python to evaluate this ‘math.sqrt(...)’ expression, it evaluates the argument,
‘abs(...)’, and then applies math.sqrt () to it. This leads Python to a nested evaluate-apply process
for the ‘abs(...)’ expression. We’ll show the whole process, with indentation to make it clearer.
We're going to show this as a list of steps, with ‘>’ to show how the various operations nest inside each
other.

Evaluate the arg to math.sqrt:

Evaluate the args to sub:

Evaluate the args to mul:

> Get the value of b

Apply mul to b and b, creating r3=mul(b, b).

Evaluate the args to mul:

> Evaluate the args to mul:

> > Get the value of a

> Apply mul to 4 and a, creating r5=mul(4, a).

> Get the value of c

Apply mul to r5 and c, creating r4=mul(mul(4, a), c).

Apply sub to r3 and r4, creating r2=sub(mul(b, b), mul(mul(4, a), ¢)).
Apply math.sqrt to r2, creating ri=math.sqrt(sub(mul(b, b), mul(mul(4, a), c))).

V V V V V V V V V V.YV
V V V V V V V V.V

Notice that a number of intermediate results were created as part of this evaluation. If we were doing
this by hand, we’d write these down as steps toward the final result.

The apply part of the evalute-apply cycle is sometimes termed a function call. The idea is that the
main procedure “calls” the body of a function; the function does its work and returns to the main
procedure. This is also called a function invocation.

10.2 Function Definition: The def and return Statements

We create a function with a def statement. This provides the name, parameters and the suite of statements
that creates the function’s result.

def name (parameter (, ...)):
suite

The name is the name by which the function is known. The parameters is a list of variable names; these
names are the local variables to which actual argument values will be assigned when the function is applied.
The suite (which must be indented) is a block of statements that computes the value for the function.

10.2. Function Definition: The def and return Statements 109

Building Skills in Python, Release 2.6.5

The first line of a function’s suite is expected to be a document string (generally a triple-quoted string)
that provides basic documentation for the function. This is traditionally divided in two sections, a summary
section of exactly one line and the detail section. We’'ll return to this style guide in Functions Style Notes.

The return statement specifies the result value of the function. This value will become the result of applying
the function to the argument values. This value is sometimes called the effect of the function.
return expression
The yield statement specifies one of the result values of an iterable function. We’ll return to this in Iterators
and Generators.
Let’s look at a complete example.
def odd(spin):
"""Return true if this spin is odd."""
if spin % 2 ==

return True
return False

1. We name this function odd (), and define it to accept a single parameter, named spin.
2. We provide a docstring with a short description of the function.
3. In the body of the function, we test to see if the remainder of spin /2 is 1; if so, we return True.

4. Otherwise, we return False.

10.3 Function Use

When Python evaluates ‘odd (n)’, the following things will happen.

1. It evaluates n. For a simple variable, the value is the object to which the variable refers. For an
expression, the expression is evaluated to result in an object.

2. Tt assigns this argument value to the local parameter of odd() (named spin).
3. Tt applies odd(): the suite of statements is executed, ending with a return statement.

4. This value on the return statement is returned to the calling statement so that it can finish it’s
execution.

We would use this odd () function like this.

s = random.randrange(37)
0 <= s <= 36, single-0 roulette
if s ==
print "zero"
elif odd(s):
print s, "odd"
else:
print s, "even"

1. We evaluate a function named random.randrange to create a random number, s.

2. The if clause handles the case where s is zero.

110 Chapter 10. Functions

Building Skills in Python, Release 2.6.5

3. The first elif clause evaluates our odd () function. To do this evaluation, Python must set spin to the
value of s and execute the suite of statements that are the body of odd(). The suite of statements
will return either True or False.

4. Since the if and elif clauses handle zero and odd cases, all that is left is for s to be even.

10.4 Function Varieties

Some programming languages make a distinction between various types of functions or “subprograms”. There
can be “functions” or “subroutines” or “procedure functions”. Python (like Java and C++) doesn’t enforce
this kind of distinction.

Instead, Python imposes some distinction based on whether the function uses parameters and returns a value
or yields a collection of values.

“Ordinary” Functions. Functions which follow the classic mathematical definitions will map input argu-
ment values to a resulting value. These are, perhaps, a common kind of function. They include a return
statement to express the resulting value.

Procedure Functions. One common kind of function is one that doesn’t return a result, but instead carries
out some procedure. This function would omit any return statement. Or, if a return statement is used to
exit from the function, the statement would have no value to return.

Carrying out an action is sometimes termed a side-effect of the function. The primary effect is always the
value returned.

Here’s an example of a function that doesn’t return a value, but carries out a procedure.

from __future__ import print_function
def report(spin):
"""Report the current spin.
if spin ==
print("zero")
return
if odd(spin):
print(spin, "odd")
return
print(spin, "even")

mwmn

This function, report(), has a parameter named spin, but doesn’t return a value. Here, the return
statements exit the function but don’t return values.

This kind of function would be used as if it was a new Python language statement, for example:

for i in range(10):
report(random.randrange(37))

Here we execute the report () function as if it was a new kind of statement. We don’t evaluate it as part of
an expression.

There’s actually no real subtlety to this distinction. Any expression can be used as a Python statement. A
function call is an expression, and an expression is a statement. This greatly simplifies Python syntax. The
docstring for a function will explain what kind of value the function returns, or if the function doesn’t return
anything useful.

The simple return statement, by the way, returns the special value None. This default value means that you
can define your function like report (), above, use it in an expression, and everything works nicely because
the function does return a value.

10.4. Function Varieties 111

Building Skills in Python, Release 2.6.5

for i in range(10):
t= report(random.randrange(37))
print t

You’ll see that t is None .

Factory Functions. Another common form is a function that doesn’t take a parameter. This function is
a factory which generates a value.

Some factory functions work by accessing some object encapsulated in a module. In the following example,
we’ll access the random number generator encapsulated in the random module.

def spinWheel():
"""Return a string result from a roulette wheel spin."""
t= random.randrange (38)
if t == 37:
return "00"
return str(t)

This function’s evaluate-apply cycle is simplified to just the apply phase. To make 0 (zero) distinct from 00
(double zero), it returns a string instead of a number.

Generators. A generator function contains the yield statement. These functions look like conventional
functions, but they have a different purpose in Python. We will examine this in detail in Iterators and
Generators.

These functions have a persistent internal processing state; ordinary functions can’t keep data around from
any previous calls without resorting to global variables. Further, these functions interact with the for
statement. Finally, these functions don’t make a lot of sense until we’ve worked with sequences in Sequences:
Strings, Tuples and Lists.

10.5 Some Examples

Here’s a big example of using the odd() , spinWheel() and report() functions.
functions.py

#!/usr/bin/env python
import random

def odd(spin):
""Modd (number) -€gt; boolean."""
return spinj2 == 1

def report(spin):
"""Reports the current spin on standard output. Spin is a String"""
if int(spin) == O:
print "zero"
return
if odd(int(spin)):
print spin, "odd"
return
print spin, "even"

112 Chapter 10. Functions

Building Skills in Python, Release 2.6.5

def spinWheel():
"""Returns a string result from a roulette wheel spin."""
t= random.randrange (38)
if t == 37:
return "00"
return str(t)

for i in range(12):
n= spinWheel ()
report(n)

1. We've defined a function named odd (). This function evaluates a simple expression; it returns True if
the value of it’s parameter, spin, is odd.

2. The function called report() uses the odd() function to print a line that describes the value of the
parameter, spin. Note that the parameter is private to the function, so this use of the variable name
spin is technically distinct from the use in the odd() function. However, since the report () function
provides the value of spin to the odd() function, their two variables often happen to have the same
value.

3. The spinWheel() function creates a random number and returns the value as a string.

4. The “main” part of this program is the for loop at the bottom, which calls spinWheel (), and then
report(). The spinWheel() function uses random.randrange(); the report() function uses the
odd () function. This generates and reports on a dozen spins of the wheel.

For most of our exercises, this free-floating main script is acceptable. When we cover modules, in
Components, Modules and Packages, we’ll need to change our approach slightly to something like the
following.

def main():
for i in range(12):
n= spinWheel ()
report(n)

main()

This makes the main operation of the script clear by packaging it as a function. Then the only
free-floating statement in the script is the call to main().

10.6 Hacking Mode

On one hand we have interactive use of the Python interpreter: we type something and the interpreter
responds immediately. We can do simple things, but when our statements get too long, this interaction can
become a niusance. We introduced this first, in Command-Line Interaction.

On the other hand, we have scripted use of the interpreter: we present a file as a finished program to execute.
While handy for getting useful results, this isn’t the easiest way to get a program to work in the first place.
We described this in Script Mode.

In between the interactive mode and scripted mode, we have a third operating mode, that we might call
hacking mode. The idea is to write most of our script and then exercise portions of our script interactively.
In this mode, we’ll develop script files, but we’ll exercise them in an interactive environment. This is handy
for developing and debugging function definitions.

The basic procedure is as follows.

10.6. Hacking Mode 113

Building Skills in Python, Release 2.6.5

7.

The

. In our favorite editor, write a script with our function definitions. We often leave this editor window
open. IDLE, for example, leaves this window open for us to look at.

Open a Python shell. IDLE, for example, always does this for us.

In the Python Shell, import the script file. In IDLE, this is effectively what happens when we run
the module with F5.

This will execute the various def statements, creating our functions in our interactive shell.
In the Python Shell, test the function interactively. If it works, we’re done.

If the functions in our module didn’t work, we return to our editor window, make any changes and
save the file.

In the Python Shell, clear out the old definition by restarting the shell. In IDLE, we can force this
with F6. This happens automatically when we run the module using F5

Go back to step 3, to import and test our definitions.

interactive test results can be copied and pasted into the docstring for the file with our function

definitions. We usually copy the contents of the Python Shell window and paste it into our module’s or
function’s docstring. This record of the testing can be validated using the doctest module.

Example. Here’s the sample function we’re developing. If you look carefully, you might see a serious
problem. If you don’t see the problem, don’t worry, we’ll find it by doing some debugging.

In IDLE, we created the following file.

fun

def

ctionl.py Initial Version

odd(number):
"iodd(number) -> boolean

Returns True if the given number is odd.

mwmn

return number 7, 2 == "1"

We have two windows open: functionl.py and Python Shell.

Here’s our interactive testing session. In our functionl.py window, we hit F5 to run the module. Note
the line that shows that the Python interpreter was restarted; forgetting any previous definitions. Then we
exercised our function with two examples.

Python 2.5.1 (r251:54863, Oct 5 2007, 21:08:09)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

skt ok sk sk ok ok stk ok sk ok sk ki ksl s ok sk sk ok stk ok sk sk sk sk sk ki sk sk sk ok sk sk ok ok
Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external
interface and no data is sent to or received from the Internet.
skt e ok sk s ke ok sk sk ke sk sk s sk sk s sk sk s ok sk s s ksl s ke ok sk s e ok sk s ke sk sk s ke sk sk s ke sk sk s ok sk sk e ok sk sk e ok ok

IDLE 1.1.4

>>>
>>>
>>>

RESTART

0dd (2)

False

114

Chapter 10. Functions

Building Skills in Python, Release 2.6.5

>>> 0dd(3)
False

Clearly, it doesn’t work, since 3 is odd. When we look at the original function, we can see the problem.
The expression ‘number % 2 == "1"’ should be ‘number % 2 == 1’

We need to fix functionl.py. Once the file is fixed, we need to remove the old stuff from Python, re-import
our function and rerun our test. IDLE does this for us when we hit F5 to rerun the module. It shows this
with the prominent restart message.

If you are not using IDLE, you will need to restart Python to clear out the old definitions. Python optimizes
import operations; if it’s seen the module once, it doesn’t import it a second time. To remove this memory
of which modules have been imported, you will need to restart Python.

10.7 More Function Definition Features

Python provides a mechanism for optional parameters. This allows us to create a single function which has
several alternative forms. In other languages, like C++ or Java, these are called overloaded functions; they
are actually separate function definitions with the same name but different parameter forms. In Python, we
can write a single function that accepts several parameter forms.

Python has three mechanisms for dealing with optional parameters and a variable number of parameters.
We’ll cover the basics of optional parameters in this section. The other mechanisms for dealing with variable
numbers of parameters will be deferred until Advanced Parameter Handling For Functions because these
mechanisms use some more advanced data structures.

Python functions can return multiple values. We’ll look at this, also.

10.7.1 Default Values for Parameters

The most common way to implement optional parameters is by providing a default value for the optional
parameters. If no argument is supplied for the parameter, the default value is used.

def report(spin, count=1):
print spin, count, "times in a row"

This silly function can be used in two ways:

report(n)
report(n, 2)

The first form provides a default argument of 1 for the count parameter. The second form has an explicit
argument value of 2 for the count parameter.

If a parameter has no default value, it is not optional. If a parameter has a default value, it is optional. In
order to disambiguate the assignment of arguments to parameters, Python uses a simple rule: all required
parameters must be first, all optional parameters must come after the required parameters.

The int () function does this. We can say ‘int ("23")’ to do decimal conversion and ‘int("23",16)’ to do
hexadecimal conversion. Clearly, the second argument to int () has a default value of 10.

Important: Red Alert

It’s very, very important to note that default values must be immutable objects. We’ll return to this concept
of mutability in Data Structures.

10.7. More Function Definition Features 115

Building Skills in Python, Release 2.6.5

For now, be aware that numbers, strings, None, and tuple objects are immutable.

As we look at various data type, we’ll find that lists, sets and dictionaries are mutable, and cannot be used
as default values for function parameters.

Fancy Defaults. When we look at the Python range () function, we see a more sophisticated version of
this.

‘range (x)’ is the same as ‘range(0,x,1)’.
‘range(x,y)’ is the same as ‘range(x,y,1)".

It appears from these examples that the first parameter is optional. The authors of Python use a pretty
slick trick for this that you can use also. The range () function behaves as though the following function is
defined.

def range(x, y=None, z=None):
if y==None:
start, stop, step =0, x, 1
elif z==None:
start, stop, step = x, y, 1
else:
start, stop, step = x, y, 2
Real work is done with start, stop and step

By providing a default value of None, the function can determine whether a value was supplied or not
supplied. This allows for complex default handling within the body of the function.

Conclusion. Python must find a value for all parameters. The basic rule is that the values of parameters are
set in the order in which they are declared. Any missing parameters will have their default values assigned.
These are called positional parameters, since the position is the rule used for assigning argument values when
the function is applied.

If a mandatory parameter (a parameter without a default value) is missing, this is a basic TypeError.

For example:

badcall.py

#!/usr/bin/env python
def hack(a,b):

print a+b
hack(3)

When we run this example, we see the following.

MacBook-5:Examples slott$ python badcall.py
Traceback (most recent call last):
File "badcall.py", line 4, in <module>
hack(3)
TypeError: hack() takes exactly 2 arguments (1 given)

10.7.2 Providing Argument Values by Keyword

In addition to supplying argument values by position, Python also permits argument values to be specified
by name. Using explicit keywords can make programs much easier to read.

116 Chapter 10. Functions

Building Skills in Python, Release 2.6.5

First, we’ll define a function with a simple parameter list:

import random
def averageDice(samples=100):
"""Return the average of a number of throws of 2 dice."""
s =0
for i in range(samples):
d1,d2 = random.randrange(6)+1,random.randrange(6)+1
s += di1+d2
return float(s)/float(samples)

Next, we’ll show three different kinds of arguments: keyword, positional, and default.

testl = averageDice(samples=200)
test2 = averageDice(300)
test3 = averageDice()

When the averageDice() function is evaluated to set testi, the keyword form is used. The second call of
the averageDice () function uses the positional form. The final example relies on a default for the parameter.

Conclusion. This gives us a number of variations including positional parameters and keyword parameters,
both with and without defaults. Positional parameters work well when there are few parameters and their
meaning is obvious. Keyword parameters work best when there are a lot of parameters, especially when
there are optional parameters.

Good use of keyword parameters mandates good selection of keywords. Single-letter parameter names or
obscure abbreviations do not make keyword parameters helpfully informative.

Here are the rules we’ve seen so far:
1. Supply values for all parameters given by name, irrespective of position.
2. Supply values for all remaining parameters by position; in the event of duplicates, raise a TypeError.

3. Supply defaults for any parameters that have defaults defined; if any parameters still lack values, raise
a TypeError.

There are still more options available for handling variable numbers of parameters. It’s possible for additional
positional parameters to be collected into a sequence object. Further, additional keyword parameters can
be collected into a dictionary object. We’ll get to them when we cover dictionaries in Advanced Parameter
Handling For Functions.

10.7.3 Returning Multiple Values

One common desire among programmers is a feature that allows a function to return multiple values. Python
has some built-in functions that have this property. For example, divmod () returns the divisor and remainder
in division. We could imagine a function, ro11Dice () that would return two values showing the faces of two
dice.

In Python, it is done by returning a tuple. We’'ll wait for Tuples for complete information on tuples. The
following is a quick example of how multiple assignment works with functions that return multiple values.

rolldice.py

10.7. More Function Definition Features 117

Building Skills in Python, Release 2.6.5

import random
def rollDice():

return (1 + random.randrange(6), 1 + random.randrange(6))

d1,d2=rollDice()
print di,d2

This shows a function that creates a two-valued tuple. You'll recall from Multiple Assignment Statement
that Python is perfectly happy with multiple expressions on the right side of =, and multiple destination
variables on the left side. This is one reason why multiple assignment is so handy.

10.8 Function Exercises

1. Fast exponentiation. This is a fast way to raise a number to an integer power. It requires the fewest

multiplies, and does not use logarithms.
Fast Exponentiation of integers, raises n to the p power
(a) Base Case. If p = 0: return 1.0.
(b) Odd. If p is odd: return n x fastexp(n,p — 1).
(c) Even. If p is even:
compute t «— fastexp(n, g),
return ¢ X t.

2. Greatest Common Divisor. The greatest common divisor is the largest number which will evenly
divide two other numbers. You use this when you reduce fractions. See Greatest Common Divisor
for an alternate example of this exercise’s algorithm. This version can be slightly faster than the loop
we looked at earlier.

Greatest Common Divisor of two integers, p and g
(a) Base Case. If p = ¢: return p.

(b) p < q. If p < ¢: return GCD(q, p).

(¢) p>q. If p> ¢ return GCD(p,p — q).

3. Factorial Function. Factorial of a number n is the number of possible arrangements of 0 through n

things. It is computed as the product of the numbers 1 through n. That is, 1 X 2 X 3 X -+ X n.
The formal definition is
nl=nxnm-1)xn—-2)x---x1
ol=1
We touched on this in Computing e. This function definition can simplify the program we wrote for
that exercise.
118 Chapter 10. Functions

Building Skills in Python, Release 2.6.5

Factorial of an integer, n

(a) Base Case. If n =0, return 1.
(b) Multiply. If n > 0: return n X factorial(n — 1).

. Fibonacci Series. Fibonacci numbers have a number of interesting mathematical properties. The
ratio of adjacent Fibonacci numbers approximates the golden ratio ((1 4+ v/5)/2, about 1.618), used
widely in art and architecture.

The nth Fibonacci Number, F),.

(a) F(0) Case. If n = 0: return 0.
(b) F(1) Case. If n = 1: return 1.
(c) F(n) Case. If n > 1: return F(n — 1) + F(n — 2).

. Ackermann’s Function. An especially complex algorithm that computes some really big results. This
is a function which is specifically designed to be complex. It cannot easily be rewritten as a simple
loop. Further, it produces extremely large results because it describes extremely large exponents.

Ackermann’s Function of two numbers, m and n

(a) Base Case. If m = 0: return n + 1.
(b) N Zero Case. If m # 0 and n = 0: return ackermann(m — 1, 1).
(¢) N Non-Zero Case. If m # 0 and n # 0: return ackermann(m — 1, ackermann(m,n — 1)).

Yes, this requires you to compute ackermann(m,n — 1) before you can compute ackermann(m —
1, ackermann(m,n — 1)).

. Maximum Value of a Function. Given some integer-valued function f (), we want to know what
value of z has the largest value for f () in some interval of values. For additional insight, see [Dijkstra76].

Imagine we have an integer function of an integer, call it £(). Here are some examples of this kind of
function.

e ‘def f1(x): return x’
o ‘def f2(x): return -5/3%x-3’
o ‘def f3(x): return —-5*x*x+2*x-3’

The question we want to answer is what value of z in some fixed interval returns the largest value for
the given function? In the case of the first example, ‘def £1(x): return x’, the largest value of £1()
in the interval 0 < x < 10 occurs when z is 9.

What about £3() in the range —10 < z < 107?

Max of a Function, F, in the interval low to high

(a) Initialize.
T +— low;

max «— T;

10.8. Function Exercises 119

Building Skills in Python, Release 2.6.5

maxp — F(max).
(b) Loop. While low < x < high.
i. New Max? If F(z) > mazp:
mazx «— x;
maxp — F(max).
ii. Next X. Increment z by 1.

(c) Return. Return maz as the value at which F(x) had the largest value.

7. Integration. This is a simple rectangular rule for finding the area under a curve which is continuous

on some closed interval.
We will define some function which we will integrate, call it £(x) (). Here are some examples.
e ‘def f1(x): return x*x’
o ‘def f2(x): return 0.5 * x * x’
o ‘def £3(x): return exp(x)’
e ‘def f4(x): return 5 * sin(x)’

When we specify y = f(z), we are specifying two dimensions. The y is given by the function’s values.
The z dimension is given by some interval. If you draw the function’s curve, you put two limits on the
x axis, this is one set of boundaries. The space between the curve and the y axis is the other boundary.

The z axis limits are a and b. We subdivide this interval into s rectangles, the width of each is h = b:—“

We take the function’s value at the corner as the average height of the curve over that interval. If the
interval is small enough, this is reasonably accurate.

Integrate a Function, F, in the interval a to b in s steps

(a) Initialize.
T —a
b—a
s

h «—

sum « 0.0
(b) Loop. While a <z < b.
i. Update Sum. Increment sum by F'(z) X h.
ii. Next X. Increment x by h.

(c) Return. Return sum as the area under the curve F() for a <z < b.

. Field Bet Results. In the dice game of Craps, the Field bet in craps is a winner when any of the

numbers 2, 3, 4, 9, 10, 11 or 12 are rolled. On 2 and 12 it pays 2:1, on any of the other numbers, it
pays 1:1.

Define a function ‘win(dice, num, pays)’ If the value of dice equals num, then the value of pays is
returned, otherwise 0 is returned. Make the default for pays a 1, so we don’t have to repeat this value
over and over again.

Define a function ‘field(dice)’ This will call win() 7 times: once with each of the values for which
the field pays. If the value of dice is a 7, it returns -1 because the bet is a loss. Otherwise it returns 0
because the bet is unresolved.

120

Chapter 10. Functions

Building Skills in Python, Release 2.6.5

It would start with

def field(dice):
win(dice, 2, pays=2)
win(dice, 3, pays=1)

Create a function ‘rol1()’ that creates two dice values from 1 to 6 and returns their sum. The sum of
two dice will be a value from 2 to 12.

Create a main program that calls rol1l1() to get a dice value, then calls field() with the value that
is rolled to get the payout amount. Compute the average of several hundred experiments.

9. range() Function Keywords. Does the range function permit keywords for supplying argument
values? What are the keywords?

10. Optional First Argument. Optional parameters must come last, yet range fakes this out by appear-
ing to have an optional parameter that comes first. The most common situation is ‘range(5)’ , and
having to type ‘range (0,5)’ seems rather silly. In this case, convenience trumps strict adherence to the
rules. Is this a good thing? Is strict adherence to the rules more or less important than convenience?

10.9 Object Method Functions

We’ve seen how we can create functions and use those functions in programs and other functions. Python
has a related technique called methods or method functions. The functions we’ve used so far are globally
available. A method function, on the other hand, belongs to an object. The object’s class defines what
methods and what properties the object has.

We’ll cover method functions in detail, starting in Classes. For now, however, some of the Python data types
we’re going to introduce in Data Structures will use method functions. Rather than cover too many details,
we’ll focus on general principles of how you use method functions in this section.

The syntax for calling a method function looks like this:

someObject.aMethod(argument list)

)

A single ‘.’ separates the owning object (someObject) from the method name (aMethod()).

We glanced at a simple example when we first looked at complex numbers. The complex conjugate function
is actually a method function of the complex number object. The example is in Complexr Numbers.

In the next chapter, we’ll look at various kinds of sequences. Python defines some generic method functions
that apply to any of the various classes of sequences. The string and list classes, both of which are special
kinds of sequences, have several methods functions that are unique to strings or lists.

For example:

>>> "Hi Mom".lower ()

'hi mom'

Here, we call the lower () method function, which belongs to the string object "Hi Mom".

When we describe modules in Components, Modules and Packages, we’ll cover module functions. These are
functions that are imported with the module. The array module, for example, has an array() function
that creates array objects. An array object has several method functions. Additionally, an array object is
a kind of sequence, so it has all of the methods common to sequences, also.

10.9. Object Method Functions 121

Building Skills in Python, Release 2.6.5

file objects have an interesting life cycle, also. A file object is created with a built-in function, file().
A file object has numerous method functions, many of which have side-effects of reading from and writing
to external files or devices. We'll cover files in Files, listing most of the methods unique to file objects.

10.10 Functions Style Notes

The suite within a compound statement is typically indented four spaces. It is often best to set your text
editor with tab stops every four spaces. This will usually yield the right kind of layout.

We’ll show the spaces explicitly as (in the following fragment.

def max(a,_b):
puuuifpa>=ub:
I TR TN U ML=
vououifubu>=pa:
LuLLLLLLm=Ub
Luppreturn m

This is has typical spacing for a piece of Python programming.

Also, limit your lines to 80 positions or less. You may need to break long statements with a ‘\’ at the end of
a line. Also, parenthesized expressions can be continued onto the next line without a ‘\’. Some programmers
will put in extra ()’ just to make line breaks neat.

Names. Function names are typically mixedCase(). However, a few important functions were done in
CapWords () style with a leading upper case letter. This can cause confusion with class names, and the
recommended style is a leading lowercase letter for function names.

In some languages, many related functions will all be given a common prefix. Functions may be called
inet_addr(), inet_network(), inet_makeaddr (), inet_lnaof (), inet_netof (), inet_ntoa(), etc. Be-
cause Python has classes (covered in Data + Processing = Objects) and modules (covered in Components,
Modules and Packages), this kind of function-name prefix is not used in Python programs. The class or
module name is the prefix. Look at the example of math and random for guidance on this.

Parameter names are also typically mixedCase. In the event that a parameter or variable name conflicts
with a Python keyword, the name is extended with an ‘_". In the following example, we want our parameter
to be named range, but this conflicts with the builtin function range (). We use a trailing ‘_’ to sort this
out.

def integrate(aFunction, range_):
"""Integrate a function over a range."""

Blank lines are used sparingly in a Python file, generally to separate unrelated material. Typicaly, function
definitions are separated by single blank lines. A long or complex function might have blank lines within the
body. When this is the case, it might be worth considering breaking the function into separate pieces.

Docstrings. The first line of the body of a function is called a docstring. The recommended forms for
docstrings are described in Python Extension Proposal (PEP) 257.

Typically, the first line of the docstring is a pithy summary of the function. This may be followed by a blank
line and more detailed information. The one-line summary should be a complete sentence.

def fact(n):
"mifact(number) -> number

Returns the number of permutations of n things."""

122 Chapter 10. Functions

Building Skills in Python, Release 2.6.5

if n == 0: return 1L
return n*fact(n-1L)

def bico(n, r):
""ipico(number, number) -> number

Returns the number of combinations of n things
taken in subsets of size r.

Arguments:
n —-— size of domain
r —-— size of subset

mmnn

return fact(n)/(fact(r)*fact(n-r))

The docsting can be retrieved with the help() function.

help (object)
Provides help about the given object.

Here’s an example, based on our fact () shown above.

>>> help(fact)
Help on function fact in module __main__:

fact(n)
fact(number) -> number

Returns the number of permutations of n things.

Note that you will be in the help reader, with a prompt of (END). Hit q to quit the help reader. For more
information, see Getting Help.

10.10. Functions Style Notes 123

Building Skills in Python, Release 2.6.5

124 Chapter 10. Functions

CHAPTER

ELEVEN

ADDITIONAL NOTES ON
FUNCTIONS

The global Statement

In Functions and Namespaces we’ll describe some of the internal mechanisms Python uses for storing vari-
ables. We’ll introduce the global statement in The global Statement.

We'll include a digression on the two common argument binding mechanisms: call by value and call by
reference in Call By Value and Call By Reference. Note that this is a distinction that doesn’t apply to
Python, but if you have experience in languages like C or C++, you may wander where and how this is
implemented.

Finally, we’ll cover some aspects of functions as first-class objects in Function Objects.

11.1 Functions and Namespaces

This is an overview of how Python determines the meaning of a name. We’ll omit some details to hit the
more important points. For more information, see section 4.1 of the Python Language Reference.

The important issue is that we want variables created in the body of a function to be private to that
function. If all variables are global, then each function runs a risk of accidentally disturbing the value of a
global variable. In the COBOL programming language (without using separate compilation or any of the
modern extensions) all variables are globally declared in the data division, and great care is required to
prevent accidental or unintended use of a variable.

To achieve privacy and separation, Python maintains several dictionaries of variables. These dictionaries
define the context in which a variable name is understood. Because these dictionaries are used for resolution
of variables, which name objects, they are called namespaces. A global namespace is available to all modules
that are part of the currently executing Python script. Each module, class, function, lambda, or anonymous
block of code given to the exec command has its own private namespace.

Names are resolved using the nested collection of namespaces that define an execution environment. Python
always checks the most-local dictionary first, ending with the global dictionary.

Consider the following script.
def deep(a, b):

print "a=", a
print "b=", b

125

Building Skills in Python, Release 2.6.5

def shallow(hows, things):
deep(hows, 1)
deep(things, coffee)

hows= 1

coffee= 2

shallow("word", 3.1415926)
shallow(hows, coffee)

1. The deep() function has a local namespace, where two variables are defined: a and b. When deep() is
called from shallow(), there are three nested scopes that define the environment: the local namespace
for deep(): the local namespace for shallow(), and the global namespace for the main script.

2. The shallow() function has a local namespace, where two variables are defined: hows and things.

When shallow() is called from the main script, the local hows is resolved in the local namespace. It
hides the global variable with the same name.

The reference to coffee is not resolved in the local namespace, but is resolved in the global namespace.
This is called a free variable, and is sometimes a symptom of poor software design.

3. The main script — by definition — executes in the global namespace, where two variables (hows and
coffee) are defined, along with two functions, deep() and shallow().

Built-in Functions. If you evaluate the function globals(), you’ll see the mapping that contains all of
the global variables Python knows about. For these early programs, all of our variables are global.

If you simply evaluate locals(), you’ll see the same thing. However, if you call locals() from within the
body of a function, you'll be able to see the difference between local and global variables.

The following example shows the creation of a gobal variable a, and a global function, q. It shows the local
namespace in effect while the function is executing. In this local namespace we also have a variable named
a.

>>> a=22.0
>>> globals()

{'__builtins__': <module '__builtin__' (built-in)>, '_ _name__': '__main__',
' doc__': None, 'a': 22.0}
>>> def q(x, y):

a=x/y

print locals()

>>> locals()

{'__builtins__': <module '__builtin__' (built-in)>, '__name__': '__main__"',
'q': <function q at 0x76830>, '__doc__': None, 'a': 22.0}

>>> globals()

{'__builtins__': <module '__builtin__' (built-in)>, '__name__': '__main__"',
'q': <function q at 0x76830>, '__doc__': None, 'a': 22.0}

>>> q(22.0,7.0)
{'a': 3.1428571428571428, 'y': 7.0, 'x': 22.0}

The function vars() accepts a parameter which is the name of a specific local context: a module, class, or
object. It returns the local variables for that specific context. The local variables are kept in a local variable
named __dict__. The vars() function retrieves this.

The dir() function examines the __dict__ of a specific object to locate all local variables as well as other
features of the object.

Assignment statements, as well as def and class statements, create names in the local dictionary. The del
statement removes a name from the local dictionary.

126 Chapter 11. Additional Notes On Functions

Building Skills in Python, Release 2.6.5

Some Consequences. Since each imported module exists in it’s own namespace, all functions and classes
within that module must have their names qualified by the module name. We saw this when we imported
math and random. To use the sqrt() function, we must say ‘math.sqrt’, providing the module name that
is used to resolve the name sqrt ().

This module namespace assures that everything in a module is kept separate from other modules. It makes
our programs clear by qualifying the name with the module that defined the name.

The module namespace also allow a module to have relatively global variables. A module, for example, can
have variables that are created when the module is imported. In a sense these are global to all the functions
and classes in the module. However, because they are only known within the module’s namespace, they
won’t conflict with variables in our program or other modules.

Having to qualify names within a module can become annoying when we are making heavy use of a module.
Python has ways to put elements of a module into the global namespace. We'll look at these in Components,
Modules and Packages.

11.2 The global Statement

The suite of statements in a function definition executes with a local namespace that is different from the
global namespace. This means that all variables created within a function are local to that function. When
the suite finishes, these working variables are discarded.

The overall Python session works in the global namespace. Every other context (e.g. within a function’s
suite) is a distinct local namespace. Python offers us the global statement to change the namespace search
rule.

global name

The global statement tells Python that the following names are part of the global namespace, not the local
namespace.

The following example shows two functions that share a global variable.

ratePerHour= 45.50

def cost(hours):
global ratePerHour
return hours * ratePerHour

def laborMaterials(hours, materials):
return cost(hours) + materials

Warning: Global Warning

The global statement has a consequence of tightly coupling pieces of software. This can lead to difficulty
in maintenance and enhancement of the program. Classes and modules provide better ways to assemble
complex programs.

As a general policy, we discourage use of the global statement.

11.3 Call By Value and Call By Reference

Beginning programmers can skip this section. This is a digression for experienced C and C++4 programmers.

Most programming languages have a formal mechanism for determining if a parameter receives a copy of the
argument (call by value) or a reference to the argument object (call by name or call by reference.)

11.2. The global Statement 127

Building Skills in Python, Release 2.6.5

The distinction is important in languages with “primitive” types: data which is not a formal object. These
primitive types can be efficiently passed by value, where ordinary objects are more efficiently passed by
reference.

Additionally, this allows a languge like C or C++ to use a reference to a variable as input to a function and
have the function update the variable without an obvious assignment statement.

Bad News. The following scenario is entirely hypothetical for Python programmers, but a very real problem
for C and C++ programmers. Imagine we have a function to2() , with this kind of definition in C.

int to2(int *a) {
/* set parameter a's wvalue to 2 */
*a= 2;
return O;

}

This function changes the value of the variable a to 2. This would be termed a side-effect because it is in
addition to any value the function might return normally.

When we do the following in C

int x= 27;

int z= to2(&x);
printf("x=Yi, z=4i", x, z);

We get the unpleasant side-effect that our function to2() has changed the argument variable, x, and the
variable wasn’t in an assignment statement! We merely called a function, using x as an argument.

In C, the & operator is a hint that a variable might be changed. Further, the function definition should
contain the keyword const when the reference is properly read-only. However, these are burdens placed on
the programmer to assure that the program compiles correctly.

Python Rules. In Python, the arguments to a function are always objects, never references to variables.

Consider this Python version of the to2() function:

def to2(a)
a=2
return O
x = 27

z = to2(x)
print "x=%d, z=%d" % (x, z)

The variable x is a reference to an integer object with a value of 27. The parameter variable (a) in the to2()
function is a reference to the same object, and a is local to the function’s scope. The original variable, x,
cannot be changed by the function, and the original argument object, the integer 27, is immutable, and can’t
be changed either.

If an argument value is a mutable object, the parameter is a reference to that object, and the function has
access to methods of that object. The methods of the object can be called, but the original object cannot
be replaced with a new object.

We'll look at mutable objects in Data Structures. For now, all the objects we’ve used (strings and numbers)
are immutable and cannot be changed.

The Python rules also mean that, in general, all variable updates must be done explicitly via an assignment
statement. This makes variable changes perfectly clear.

128 Chapter 11. Additional Notes On Functions

Building Skills in Python, Release 2.6.5

11.4 Function Objects

One interesting consequence of the Python world-view is that a function is an object of the class function,
a subclass of callable. The common feature that all callable objects share is that they have a very simple
interface: they can be called. Other callable objects include the built-in functions, generator functions
(which have the yield statement instead of the return statement) and things called lambdas.

Sometimes we don’t want to call and evaluate a function. Sometimes we want to do other things to or with
a function. For example, the various factory functions (int (), long(), float (), complex()) can be used
with the isinstance () function instead of being called to create a new object.

For example, ‘isinstance(2,int)’ has a value of True. It uses the int () function, but doesn’t apply the
int () function.

A function object is created with the def statement. Primarily, we want to evaluate the function objects we
create. However, because a function is an object, it has attributes, and it can be manipulated to a limited
extent.

From a syntax point of view, a name followed by ‘()’ is a function call. You can think of the ‘()’ as the
“call” operator: they require evaluation of the arguments, then they apply the function.

name (arguments)

There are a number of manipulations that you might want to do with a function object.

Call The Function. By far, the most common use for a function object is to call it. When we follow a
function name with ‘()’, we are calling the function: evaluating the arguments, and applying the function.
Calling the function is the most common manipulation.

Alias The Function. This is dangerous, because it can make a program obscure. However, it can also
simplify the evoluation and enhancement of software. Here’s a scenario.

Imagine that the first version of our program had two functions named rollDie() and rollDice(). The
definitions might look like the following.

def rollDie():
return random.randrange(1,7)
def rollDice():
return random.randrange(1,7) + random.randrange(1,7)

When we wanted to expand our program to handle five-dice games, we realized we could generalize the
rollDice() function to cover both cases.

def rollNDice(n=2):
t= 0
for d in range(n):
t += random.randrange(1, 7)
return t

It is important to remove the duplicated algorithm in all three versions of our dice rolling function. Since
rollDie() and rollDice() are just special cases of rol1NDice().

We can replace our original two functions with something like the following.

def rollDie():

return rollNDice(1)
def rollDice():

return rollNDice()

11.4. Function Objects 129

Building Skills in Python, Release 2.6.5

However, we have an alternative.

This revised definition of ro11Dice () is really just an another name for the ro11NDice (). Because a function
is an object assigned to a variable, we can have multiple variables assigned to the function. Here’s how we
create an alias to a function.

def rollDie():
return rollNDice(1)

rollDice = rollNDice

Warning: Function Alias Confusion

Function alias definitions helps maintaining compatibility between old and new releases of software. It is
not something that should be done as a general practice; we need to be careful providing multiple names
for a given function. This can be a simplification. It can also be a big performance improvement for
certain types of functions that are heavily used deep within nested loops.

Function Attributes. A function object has a number of attributes. We can interrogate those attributes,
and to a limited extend, we can change some of these attributes. For more information, see section 3.2 of
the Python Language Reference and section 2.3.9.3 of the Python Library Reference.

func_doc

_doc____ Docstring from the first line of the function’s body.

func__name

___name____ Function name from the def statement.

__module_ Name of the module in which the function name was defined.

func_ defaults Tuple with default values to be assigned to each argument that has a default
value. This is a subset of the parameters, starting with the first parameter that has a default
value.

func__code The actual code object that is the suite of statements in the body of this function.

func__globals The dictionary that defines the global namespace for the module that defines this
function. This ism.__dict__ of the module which defined this function.

func__dict
dict The dictionary that defines the local namespace for the attributes of this function.
You can set and get your own function attributes, also. Here’s an example
def rollDie():
return random.randrange(1,7)

rollDie.version= "1.0"
rollDie.authoor= "sfl"

130 Chapter 11. Additional Notes On Functions

Part II1

Data Structures

131

Building Skills in Python, Release 2.6.5

The Data View

Computer programs are built with two essential features: data and processing. We started with processing
elements of Python. We're about to start looking at data structures.

In Language Basics, we introduced almost all of the procedural elements of the Python language. We started
with expressions, looking at the various operators and data types available. We described fourteen of the
approximately 24 statements that make up the Python language.

« Expression Statement. For example, a function evaluation where there is no return value. Examples
include the print () function.

e import. Used to include a module into another module or program.
e print. Used to provide visible output. This is being replaced by the print () function.

e assignment. This includes the simple and augmented assignment statements. This is how you create
variables.

o del. Used (rarely) to remove a variable, function, module or other object.

o if. Used to conditionally perform suites of statements. This includes elif and else statements.

o pass. This does nothing, but is a necessary syntactic placeholder for an if or while suite that is empty.
o assert. Used to confirm the program is in the expected state.

e for and while. Perform suites of statements using a sequence of values or while a condition is held
true.

e break and continue. Helpful statements for short-cutting loop execution.
e def. Used to define a new function.
e return. Used to exit a function. Provides the return value from the function.

o global. Used adjust the scoping rules, allowing local access to global names. We discourage its use in
The global Statement.

The Other Side of the Coin. The next chapters focus on adding various data types to the basic Python
language. The subject of data representation and data structures is possibly the most profound part of
computer programming. Most of the killer applications — email, the world wide web, relational databases —
are basically programs to create, read and transmit complex data structures.

We will make extensive use of the object classes that are built-in to Python. This experience will help us
design our own object classes in Data + Processing = Objects.

We’ll work our way through the following data structures.

e Sequences. In Sequences: Strings, Tuples and Lists we’ll extend our knowledge of data types to
include an overview various kinds of sequences: strings, tuples and lists. Sequences are collections of
objects accessed by their numeric position within the collection.

— In Strings we describe the string subclass of sequence. The exercises include some challenging
string manipulations.

— We describe fixed-length sequences, called ‘tuple’ s in Tuples.

— In Lists we describe the variable-length sequence, called a ‘list’ This ‘list’ sequence is one of
the powerful features that sets Python apart from other programming languages. The exercises
at the end of the ‘1ist’ section include both simple and relatively sophisticated problems.

e Mappings. In Mappings and Dictionaries we describe mappings and dictionary objects, called dict.
We’ll show how dictionaries are part of some advanced techniques for handling arguments to functions.
Mappings are collections of value objects that are accessed by key objects.

133

Building Skills in Python, Release 2.6.5

Sets. We'll cover set objects in Sets. Sets are simple collections of unique objects with no additional
kind of access.

Exceptions. We'll cover exception objects in Fzceptions. We'll also show the exception handling
statements, including try, except, finally and raise statements. Exceptions are both simple data
objects and events that control the execution of our programs.

Iterables. The yield statement is a variation on return that simplifies certain kinds of generator
algorithms that process or create create iterable data structures. We can iterate through almost any
kind of data collection. We can also define our own unique or specialized iterations. We’ll cover this
in Iterators and Generators.

Files. The subject of files is so vast, that we’ll introduce file objects in Files. The with statement is

particularly helpful when working with files.

Files are so centrally important that we’ll return files in Components, Modules and Packages. We’ll
look at several of the file-related modules in File Handling Modules as well as File Formats: CSV, Tab,
XML, Logs and Others..

In Functional Programming with Collections we describe more advanced sequence techniques, including
multi-dimensional processing, additional sequence-processing functions, and sorting.

Deferred Topics. There are a few topics that need to be deferred until later.

try. We’ll look at exceptions in Ezceptions. This will include the except, finally and raise statements,
also.

yield. We’ll look at Generator Functions in Iterators and Generators.

class. We'll cover this in it’s own part, Classes.

with. We’ll look at Context Managers in Managing Contexts: the with Statement.
import. We’ll revisit import in detail in Components, Modules and Packages.

exec. Additionally, we’ll cover the exec statement in The exec Statement.

134

CHAPTER

TWELVE

SEQUENCES: STRINGS, TUPLES AND
LISTS

The Common Features of Sequences

Before digging into the details, we’ll introduce the common features of three of the data types that are
containers for sequences of values.

In Sequence Semantics we will provide an overview of the semantics of sequences. We describes the common
features of the sequences in Overview of Sequences.

The sequence is central to programming and central to Python. A number of statements and functions we
have covered have sequence-related features that we have glossed over, danced around, and generally avoided.

We'll revisit a number of functions and statements we covered in previous sections, and add the power of
sequences to them. In particular, the for statement is something we glossed over in [lterative Processing:
For All and There FExists.

In the chapters that follow we’ll look at Strings, Tuples and Lists in detail. In Mappings and Dictionaries ,
we’ll introduce another structured data type for manipulating mappings between keys and values.

12.1 Sequence Semantics

A sequence is a container of objects which are kept in a specific order. We can identify the individual objects
in a sequence by their position or index. Positions are numbered from zero in Python; the element at index
zero is the first element.

We call these containers because they are a single object which contains (or collects) any number of other
objects. The “any number” clause means that they can contain zero other objects, meaning that an empty
container is just as valid as a container with one or thousands of objects.

Important: Other Languages

In some programming languages, they use words like “vector” or “array” to refer to sequential containers.
For example, in C or Java, the primitive array has a statically allocated number of positions. In Java, a
reference outside that specific number of positions raises an exception. In C, however, a reference outside
the defined positions of an array is an error that may never be detected. Really.

There are four commonly-used subspecies of sequence containers.
e String, called str. A container of single-byte ASCII characters.

o Unicode String, unicode. A container of multi-byte Unicode (or Universal Character Set) characters.

135

Building Skills in Python, Release 2.6.5

e tuple. A container of anything with a fixed number of elements.
e list. A container of anything with a dynamic number of elements.
Important: Python 3
This mix of types will change slightly.
The String and Unicode types will merge into the str type. This will represent text.
A new container, the “byte array” will be introduced, named bytes. This will represent binary data.
tuple and list won’t change.

When we create a tuple or string , we've created an immutable, or static object. We can examine the
object, looking at specific characters or items. We can’t change the object. This means that we can’t put
additional data on the end of a string. What we can do, however, is create a new string that is the
concatenation of the two original string objects.

When we create a 1ist, on the other hand, we’ve created a mutable object. A 1list can have additional
objects appended to it or inserted in it. Objects can be removed from a list, also. A list can grow and
shrink; the order of the objects in the 1ist can be changed without creating a new list object.

One other note on string. While string are sequences of characters, there is no separate character data
type. A character is simply a string of length one. This relieves programmers from the C or Java burden
of remembering which quotes to use for single characters as distinct from multi-character string. It also
eliminates any problems when dealing with Unicode multi-byte characters.

12.2 Overview of Sequences

All the varieties of sequences (string, tuple and list) have some common characteristics. We’ll identify
the common features first, and then move on to cover these in detail for each individual type of sequence.
This section is a road-map for the following three sections that cover string, tuple and ‘list’ in detail.

Literal Values. Each sequence type has a literal representation. The details will be covered in separate
sections, but the basics are these:

e string uses quotes: "string".
e tuple uses ‘() (1,'b',3.1).
e listuses ‘[1”: [1,'b',3.1].

Operations. Sequences have three common operations: ‘+’ will concatenate sequences to make longer
sequences. ‘*’ is used with a number and a sequence to repeat the sequence several times. Finally, the ‘[1’
operator is used to select elements from a sequence.

The ‘[1’ operator can extract a single item, or a subset of items by slicing. There are two forms of ‘[]".
o The single item format is sequence [index]. Ttems are numbered from 0.

o The slice format is sequence [start : end]. Items from start to end -1 are chosen to create a new
sequence; it will be a slice of the original sequence. There will be end — start items in the resulting
sequence.

Positions can be numbered from the end of the string as well as the beginning. Position -1 is the last item
of the sequence, -2 is the next-to-last item.

Here’s how it works: each item has a positive number position that identifies the item in the sequence. We’ll
also show the negative position numbers for each item in the sequence. For this example, we’re looking at a
four-element sequence like the tuple ‘(3.14159,"two words",2048, (1+2j))’ .

136 Chapter 12. Sequences: Strings, Tuples and Lists

Building Skills in Python, Release 2.6.5

forward position | 0 1 2 3
reverse position | -4 -3 -2 -1
item 3.14159 | “two words” | 2048 | (1+42j)

Why do we have two different ways of identifying each position in the sequence? If you want, you can think
of it as a handy short-hand. The last item in any sequence, S can be identified by the formula ‘S[len(8)-1
1’ . For example, if we have a sequence with 4 elements, the last item is in position 3. Rather than write
‘S[1len(S)-1 1’, Python lets us simplify this to ‘S[-1]1" .

You can see how this works with the following example.

>>> a=(3.14159, "two words",2048,(1+2j))
>>> al0]

3.1415899999999999

>>> a[-3]

'two words'

>>> al[2]

2048

>>> al[-1]

(1+23)

Built-in Functions. len(), max() and min() apply to all varieties of sequences. We’ll provide the defini-
tions here and refer to them in various class definitions.

len(sized collection)
Return the number of items of the collection. This can be any kind of sized collection. All sequences
and mappings are subclasses of collections.Sized and provide a length.

Here are some examples.

>>> len("Wednesday")
9
>>> len((1,1,2,3))
4

max (iterable__collection)
Returns the largest value in the iterable collection. All sequences and mappings are subclasses of
collections.Iterable; the max () function can iterate over elements and locate the largest.

>>> max((1,2,3))
3
>>> max('abstractly')

lyl

Note that max() can also work with a number of individual arguments instead of a single iterable
collection argument value. We looked a this in Collection Functions.

min (iterable collection)
Returns the smallest value in the iterable collection. All sequences and mappings are subclasses of
collections.Iterable; the max() function can iterate over elements and locate the smallest.

>>> min((10,11,2))

2

>>> min(('10','11','2"))
|10|

Note that strings are compared alphabetically. The min() (and max() function can’t determine that
these are supposed to be evaluated as numbers.)

12.2. Overview of Sequences 137

Building Skills in Python, Release 2.6.5

sum (iterable_collection, [start=0])
Return the sum of the items in the iterable collection. All sequences and mappings are subclasses of
collections.Iterable.

If start is provided, this is the initial value for the sum, otherwise 0 is used.

If the values being summed are not all numeric values, this will raise a TypeError exception.

>>> sum((1,1,2,3,5,8))
20
>>> sum((), 3)
3
>>> sum((1,2, 'not good'))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

any (iterable__collection)
Return True if there exists an item in the iterable collection which is True. All sequences and mappings
are subclasses of collections.Iterable.

all (iterable collection)
Return True if all items in the iterable collection are True. All sequences and mappings are subclasses
of collections.Iterable.

enumerate (iterable collection)
Iterates through the iterable collection returning 2-tuples of ‘(index, item)’

>>> for position, item in enumerate(('word',3.1415629,(2+3j))):
print position, item

0 word

1 3.1415629

2 (2+3j)

sorted (sequence, [key=None], [reverse=False[)
This returns an iterator that steps through the elements of the iterable container in ascending order.

If the reverse keyword parameter is provided and set to True, the container is iterated in descending
order.

The key parameter is used when the items in the container aren’t simply sorted using the default
comparison operators. The key function must return the fields to be compared selected from the
underlying objects in the tuple.

We'll look at this in detail in Functional Programming with Collections.

reversed (sequence)
This returns an iterator that steps through the elements in the iterable container in reverse order.

>>> tuple(reversed((9,1,8,2,7,3)))
3,7,2,8,1,9

Comparisons. The standard comparisons (‘<’, ‘<=7, >’ ‘<=’ ‘==’ ‘1=") apply to sequences. These all work
by doing item-by-item comparison within the two sequences. The item-by-item rule results in strings being
sorted alphabetically, and tuples and ‘list’s sorted in a way that is similar to strings.

There are two additional comparisons: in and not in. These check to see if a single value occurs in the
sequence. The in operator returns a True if the item is found, False if the item is not found. The not in
operator returns True if the item is not found in the sequence.

138 Chapter 12. Sequences: Strings, Tuples and Lists

Building Skills in Python, Release 2.6.5

Methods. The string and list classes have method functions that operate on the object’s value. For
instance ‘"abc".upper ()’ executes the upper () method belonging to the string literal "abc". The result
is a new string, 'ABC'. The exact dictionary of methods is unique to each class of sequences.

Statements. The tuple and list classes are central to certain Python statements, like the assignment
statement and the for statement. These were details that we skipped over in The Assignment Statement
and Iterative Processing: For All and There Exists.

Modules. There is a string module with several string specific functions. Most of these functions are
now member functions of the string type. Additionally, this module has a number of constants to define
various subsets of the ASCII character set, including digits, printable characters, whitespace characters and
others.

Factory Functions. There are also built-in factory (or conversion) functions for the sequence objects.
We've looked at some of these already, when we looked at str() and repr().

12.3 Exercises

1. Tuples and Lists. What is the value in having both immutable sequences (tuple) and mutable
sequences (1list)? What are the circumstances under which you would want to change a string?
What are the problems associated with a string that grows in length? How can storage for variable
length string be managed?

2. Unicode Strings. What is the value in making a distinction between Unicode strings and ASCII
strings? Does it improve performance to restrict a string to single-byte characters? Should all strings
simply be Unicode strings to make programs simpler? How should file reading and writing be handled?

3. Statements and Data Structures. In order to introduce the for statement in lterative Processing:
For All and There Exists, we had to dance around the sequence issue. Would it make more sense
to introduce the various sequence data structures first, and then describe statements that process the
data structure later?

Something has to be covered first, and is therefore more fundamental. Is the processing statement
more fundamental to programming, or is the data structure?

12.4 Style Notes

Try to avoid extraneous spaces in 1ist and tuple displays. Python programs should be relatively compact.
Prose writing typically keeps ()’s close to their contents, and puts spaces after commas, never before them.
This should hold true for Python, also.

The preferred formatting for a 1ist or tuple, then, is ‘[1,2,3]” or ‘(1, 2, 3)’. Spaces are not put after
the initial ‘[’ or ‘(. Spaces are not put before ‘,".

12.3. Exercises 139

Building Skills in Python, Release 2.6.5

140 Chapter 12. Sequences: Strings, Tuples and Lists

CHAPTER

THIRTEEN

STRINGS

We'll look at the two string classes from a number of viewpoints: semantics, literal values, operations,
comparison operators, built-in functions, methods and modules. Additionally, we have a digression on the
immutability of string objects.

13.1 String Semantics

A String (the formal class name is str) is an immutable sequence of ASCII characters.
A Unicode String (unicode) is an immutable sequence of Unicode characters.

Since a string (either str or unicode) is a sequence, all of the common operations on sequences apply. We
can concatenate string objects together and select characters from a string. When we select a slice from a
string, we’ve extracted a substring.

An individual character is simply a string of length one.
Important: Python 3.0

The Python 2 str class, which is limited to single-byte ASCII characters does two separate things: it
represents text as well as a collection of bytes.

The text features of str gain the features from the Unicode String class, unicode. The new str class will
represent strings of text, irrespective of the underlying encoding. It can be ASCII, UTF-8, UTF-16 or any
other encoding.

The “array of bytes” features of the Python 2 str class will be moved into a new class, bytes. This new
class will implement simple sequences of bytes and will support conversion between bytes and strings using
encoding and decoding functions.

13.2 String Literal Values

A str is a sequence of ASCII characters. The literal value for a str is written by surrounding the value
with quotes or apostrophes. There are several variations to provide some additional features.

Basic String Strings are enclosed in matching quotes (‘"’) or apostrophes (‘'’). A string en-
closed in quotes (‘"’) can contain apostrophes (‘'’); similarly, a string enclosed in apostro-
phes (‘") can contains quotes (‘"’). A basic str must be completed on a single line, or
continued with a ‘\’ as the very last character of a line.

Examples:

141

Building Skills in Python, Release 2.6.5

"consultive"
'syncopated'
"don't do that"
'"Okay," he said.'

Multi-Line String Also called “Triple-Quoted String”.

A multi-line str is enclosed in triple quotes (‘"""’) or triple apostrophes (‘' ' '’). It continues
on across line boundaries until the concluding triple-quote or triple-apostrophe.

Examples:

"rA very long
St?"’l,’ng nmnn

' " '"SELECT *

FROM THIS, THAT

WHERE THIS.KEY = THAT.FK
AND THIS.CODE = 'Active'

o

Unicode String A Unicode String uses the above quoting rules, but prefaces the quote with
(Lun?), (4u|7)7 (Lun " n’) or (‘11' ' l’)'

Unicode is the Universal Character Set; each character requires from 1 to 4 bytes of storage.
ASCII is a single-byte character set; each of the 256 ASCII characters requires a single byte
of storage. Unicode permits any character in any of the languages in common use around
the world.

A special ‘\uxxxx’ escape sequence is used for Unicode characters that don’t happen to
occur on your ASCII keyboard.

Examples:

u'\u65e5\u672c'
u"All ASCII"

Raw String A Raw String uses the above quoting rules, but prefaces the quote with (‘r"’),
(Arm) (‘I‘" n n’) or (‘rl ' |7)_

The backslash characters (‘\’) are not interpreted as escapes by Python, but are left as
is. This is handy for Windows files names that contain ‘\’. It is also handy for regular
expressions that make extensive use of backslashes.

Examples:

newline_literal= r'\n'
filename= "C:\mumbo\jumbo"
pattern= " (*\S+*)"

The newline_literal is a two character string, not the newline character.

Outside of raw strings, non-printing characters and Unicode characters that aren’t found on your keyboard
are created using escapes. A table of escapes is provided below. These are Python representations for
unprintable ASCII characters. They’re called escapes because the ‘\’ is an escape from the usual meaning
of the following character.

142 Chapter 13. Strings

Building Skills in Python, Release 2.6.5

Es- Meaning

cape

\\ Backslash (\)

\! Apostrophe (')

\" Quote (")

\a Audible Signal; the ASCII code called BEL. Some OS’s translate this to a screen flash or ignore
it completely.

\b Backspace (ASCII BS)

\f Formfeed (ASCII FF). On a paper-based printer, this would move to the top of the next page.

\n Linefeed (ASCII LF), also known as newline. This would move the paper up one line.

\r Carriage Return (ASCII CR). On a paper based printer, this returned the print carriage to the
start of the line.

\t Horizontal Tab (ASCII TAB)

\ooo An ASCII character with the given octal value. The ooo is any octal number.

\xhh | An ASCII character with the given hexadecimal value. The ‘x’ is required. The hh is any hex
number.

Adjacent Strings. Note that adjacent string objects are automatically concatenated to make a single
string.

‘"ab" "cd" "ef"’is the same as ‘"abcdef"’.
The most common use for this is the following;:
msg = "A very long" \

"message, which didn't fit on" \
"one line."

Unicode Characters. For Unicode, a special ‘\uxxxx’ escape is provided. This requires the four digit
Unicode character identification.

For example, “ B &” is made up of Unicode characters ‘U+65e5’ and ‘U+672¢’. In Python, we write this string
as ‘u'\u6be5\u672c"’.

There are a variety of Unicode encoding schemes, for example, UTF-8, UTF-16 and LATIN-1. The codecs
module provides mechanisms for encoding and decoding Unicode Strings.

13.3 String Operations

There are a number of operations on str objects, operations which create strs and operations which create
other objects from strs.

There are three operations (‘+' , ‘*’ ‘[1’) that work with all sequences (including strs) and a unique
operation, ‘%’, that can be performed only with str objects.

The ‘+’ operator creates a new string as the concatenation of the arguments.

>>> |Ihi n + lmom|
'hi mom'

The ‘*’ operator between str and numbers (number ‘*’ str or str ‘*’ number) creates a new str that is a
number of repetitions of the input str.

>>> print 3%"cool!"
cool!cool!cool!

13.3. String Operations 143

Building Skills in Python, Release 2.6.5

The ‘[1’ operator can extract a single character or a slice from the string. There are two forms: the
single-item form and the slice form.

o The single item format is string [index]. Characters are numbered from 0 to ‘len(string)’ Characters
are also numbered in reverse from -‘len(string)’ to -1.

o The slice format is string [start : end]. Characters from start to end -1 are chosen to create a new
str as a slice of the original str; there will be end — start characters in the resulting str.

If start is omitted it is the beginning of the string (position 0).
If end is omitted it is the end of the string (position -1).

Yes, you can omit both (‘someString[:]’) to make a copy of a string.

>>> s="adenosine"
>>> s[2]
lel

>>> s[:5]
'adeno'
>>> g[5:]
'sine’

>>> s[-5:]
'osine'
>>> s[:-5]
'aden'

The String Formatting Operation, %. The % operator is sometimes called string interpolation, since
it interpolates literal text and converted values. We prefer to call it string formatting, since that is a more
apt description. Much of the formatting is taken straight from the C library’s printf () function.

This operator has three forms. You can use % with a str and value, str and a tuple as well as str and
classname:dict. We’ll cover tuple and dict in detail later.

The string on the left-hand side of % contains a mixture of literal text plus conversion specifications. A
conversion specification begins with ‘%4’ For example, integers are converted with ‘%i’. Each conversion
specification will use a corresponding value from the tuple. The first conversion uses the first value of the
tuple, the second conversion uses the second value from the tuple.

For example:
import random

dl, d2 = random.randrange(1,6), random.randrange(1,6)
r= "die 1 shows , and die 2 shows "y o(dl, 42)

The first ‘%1’ will convert the value for d1 to a string and insert the value, the second ‘%i’ will convert the
value for d2 to a string. The % operator returns the new string based on the format, with each conversion
specification replaced with the appropriate values.

Conversion Specifications. Each conversion specification has from one to four elements, following this
pattern: ‘%’¢.’

[flags][width [precision]] code

The ‘% and the final code in each conversion specification are required. The other elements are optional.
The optional flags element can have any combination of the following values:

‘~* Left adjust the converted value in a field that has a length given by the width element. The default is
right adjustment.

144 Chapter 13. Strings

Building Skills in Python, Release 2.6.5

‘+? Show positive signs (sign will be ‘+’ or ‘=’). The default is to show negative signs only.
L(a space) Show positive signs with a space (sign will be Lor ‘=’). The default is negative signs only.
‘4’ Use the Python literal rules (0 for octal, Ox for hexadecimal, etc.) The default is decoration-free notation.

‘0’ Zero-fill the the field that has a length given by the width element. The default is to space-fill the field.
This doesn’t make a lot of sense with the - (left-adjust) flag.

The optional width element is a number that specifies the total number of characters for the field, including
signs and decimal points. If omitted, the width is just big enough to hold the output number. If a ‘*’ is used
instead of a number, an item from the tuple of values is used as the width of the field. For example, ‘"%*i"
% (3, d1)’ uses the value 3 from the tuple as the field width and d1 as the value to convert to a string.

9

The optional precision element (which must be preceded by a dot, ‘.’ if it is present) has a few different
purposes. For numeric conversions, this is the number of digits to the right of the decimal point. For string
conversions, this is the maximum number of characters to be printed, longer string s will be truncated. If
a ‘*’ is used instead of a number, an item from the tuple of values is used as the precision of the conversion.
For example, ‘“"%*.*f" % (6, 2, avg)’ uses the value 6 from the tuple as the field width, the value 2
from the tuple as the precision and avg as the value.

The standard conversion rules also permit a long or short indicator: ‘1’ or ‘h’. These are tolerated by Python
so that these formats will be compatible with C, but they have no effect. They reflect internal representation
considerations for C programming, not external formatting of the data.

The required one-letter code element specifies the conversion to perform. The codes are listed below.

‘%’ Not a conversion, this creates a ‘%’ in the resulting str. Use ‘%%’ to put a ‘%’ in the output str.

¢’ Convert a single-character str. This will also convert an integer value to the corresponding ASCII
character. For example, ‘"%c" % (65,)’ results in ‘"A"’.

‘s’ Convert a str. This will convert non- str objects by implicitly calling the str () function.

‘r’ Call the repr () function, and insert that value.

‘i’ ¢‘d’> Convert a numeric value, showing ordinary decimal output. The code i stands for integer, d stands
for decimal. They mean the same thing; but it’s hard to reach a consensus on which is “correct”.

‘w’ Convert an unsigned number. While relevant to C programming, this is the same as the ‘i’ or ‘d’ format
conversion.

‘o’ Convert a numeric value, showing the octal representation. ‘%#0’ gets the Python-style value with a
leading zero. This is similar to the oct () function.

‘x’ ‘X’ Convert a numeric value, showing the hexadecimal representation. ‘%#X’ gets the Python-style value
with a leading ‘0X’; ‘%#x’ gets the Python-style value with a leading ‘0x’. This is similar to the hex()
function.

‘e’ ‘E’> Convert a numeric value, showing scientific notation. ‘%e’ produces *+d.ddd ‘e’ +zz, ‘/4E’ produces

+d.ddd ‘E’ tzz.

‘£’ ‘F* Convert a numeric value, using ordinary decimal notation. In case the number is gigantic, this will
switch to ‘%g’ or ‘%G’ notation.

‘G’ “Generic” floating-point conversion. For values with an exponent larger than -4, and smaller than
the precision element, the ‘%f’ format will be used. For values with an exponent smaller than -4, or
values larger than the precision element, the ‘%e’ or ‘%E’ format will be used.

Here are some examples.

win, loss, " % (count,win,loss,float(win)/loss)

13.3. String Operations 145

Building Skills in Python, Release 2.6.5

This example does four conversions: three simple integer and one floating point that provides a width of 6
and 3 digits of precision. -0.000 is the expected format. The rest of the string is literally included in the
output.

"Spin : B " % (spin,number,color)

This example does three conversions: one number is converted into a field with a width of 3, another
converted with a width of 2, and a string is converted, using as much space as the string requires.

>>> a=6.02E23
>>> "Je" I a

'6.020000e+23"
>>> "JE" Y a

'6.020000E+23"
>>>

This example shows simple conversion of a floating-point number to the default scientific notation which has
a witdth of 12 and a precision of 6.

13.4 String Comparison Operations

[4

The standard comparisons (‘<’; ‘<=") >’ >=’ ‘==’ ‘1=") apply to str objects. These comparisons use the
standard character-by-character comparison rules for ASCII or Unicode.

There are two additional comparisons: in and not in. These check to see if a substring occurs in a longer
string. The in operator returns a True when the substring is found, False if the substring is not found. The
not in operator returns True if the substring is not found.

>>> 'a' in 'xyzzyabcxyzzy'
True

>>> 'abc' in 'xyzzyabc'
True

Don’t be fooled by the fact that string representations of integers don’t seem to sort properly. String compar-
ison does not magically recornize that the strings are representations of numbers. It’s simple “alphabetical
order” rules applied to digits.

>>> '100' < '25!'
True

This is true because ‘'1' < '2"’

13.5 String Statements

The for statement will step though all elements of a sequence. In the case of a string, it will step through
each character of the string.

For example:

for letter in "forestland":
print letter

This will print each letter of the given string.

146 Chapter 13. Strings

Building Skills in Python, Release 2.6.5

13.6 String Built-in Functions

The following built-in functions are relevant to str manipulation

chr ()
Return a str of one character with ordinal i. Note that 0 < i < 256 to be a proper ASCII character.

unichr ()
Return a Unicode String (unicode) of one character with ordinal u. 0 < u < 65536.

ord(c)
Return the integer ordinal of a one character str. This works for any character, including Unicode
characters.

unicode (string, [encoding], [errors])
Creates a new Unicode object from the given encoded string. encoding defaults to the current default
string encoding. errors defines the error handling, defaults to ‘strict’.

The unicode () function converts the string to a specific Unicode external representation. The default
encoding is ‘UTF-8 with ‘strict’ error handling.
Choices for errors are ‘strict’, ‘replace’ and ‘ignore’. Strict raises an exception for unrecognized

characters, replace substitutes the Unicode replacement character (‘\uFFFD’) and ignore skips over
invalid characters.

The codecs and unicodedata modules provide more functions for working with Unicode.

>>> unicode("hi mom","UTF-16")
u'\u6968\u6d20\u6d6f '

>>> unicode("hi mom","UTF-8")
u'hi mom'

Important: Python 3

The ord(), chr(), unichr () and unicode() functions will be simplified in Python 3.

Python 3 no longer separates ASCII from Unicode strings. These functions will all implicitly work with
Unicode strings. Note that the UTF-8 encoding of Unicode overlaps with ASCII, so this simplification to
use Unicode will not significantly disrupt programs that work ASCII files.

Several important functions were defined earlier in String Conversion Functions.
e repr(). Returns a canonical string representation of the object. For most object types,
‘eval (repr(object)) == object’

For simple numeric types, the result of repr () isn’t very interesting. For more complex, types, however,
it often reveals details of their structure.

>>> a="""a very
. long string

. in multiple lines
nnn

>>> repr(a)
"'a very \\nlong string \\nin multiple lines\\n'"

This representation shows the newline characters (‘\n’) embedded within the triple-quoted string.
Important: Python 3

The “reverse quotes” (‘*a”’) work like ‘repr(a)’. The reverse quote syntax is rarely used, and will be
dropped in Python 3.

13.6. String Built-in Functions 147

Building Skills in Python, Release 2.6.5

e str(). Return a nice string representation of the object. If the argument is a string, the return
value is the same object.

>>> a= str(355.0/113.0)
>>> a

'3.14159292035"'

>>> len(a)

13

Some other functions which apply to strings as well as other sequence objects.

e len(). For strings, this function returns the number of characters.

>>> len("abcdefg")

7

>>> len(r"\n")
2

>>> len("\n")
1

e max (). For strings, this function returns the maximum character.
e min(). For strings, this function returns the minimum character.

e sorted(). Iterate through the string’s characters in sorted order. This expands the string into an
explicit list of individual characters.

>>> sorted("malapertly")

[lal’ lal’ lel’ 'l', 'l', 'IIl', IP" 'I", 't', |yv]
>>> """ join(sorted("malapertly"))

'aaellmprty’

e reversed(). Iterate through the string’s characters in reverse order. This creates an iterator. The
iterator can be used with a variety of functions or statements.

>>> reversed("malapertly")

<reversed object at 0x600230>

>>> "' join(reversed("malapertly"))
'yltrepalam'

13.7 String Methods

A string object has a number of method functions. These can be grouped arbitrarily into transformations,
which create new string s from old, and information, which returns a fact about a string.

The following string transformation functions create a new string object from an existing string.

capitalize()
Create a copy of the string with only its first character capitalized.

center (width)
Create a copy of the string centered in a string of length width. Padding is done using spaces.

encode (encoding, [errors])
Return an encoded version of string. Default encoding is the current default string encoding. errors
may be given to set a different error handling scheme. Default is ‘strict’ meaning that encoding errors
raise a ValueError. Other possible values are ‘ignore’ and ‘replace’.

148 Chapter 13. Strings

Building Skills in Python, Release 2.6.5

expandtabs ([tabsize])
Return a copy of string where all tab characters are expanded using spaces. If tabsize is not given,
a tab size of 8 characters is assumed.

join(sequence)
Return a string which is the concatenation of the strings in the sequence. Each separator between
elements is a copy of the given string object.

1just (width)
Return a copy of string left justified in a string of length width. Padding is done using spaces.

lower ()
Return a copy of string converted to lowercase.

1strip()
Return a copy of string with leading whitespace removed.

replace (old, new, [mazsplit])
Return a copy of string with all occurrences of substring 01d replaced by new. If the optional argument
maxsplit is given, only the first maxsplit occurrences are replaced.

rjust (width)
Return a copy of string right justified in a string of length width. Padding is done using spaces.

rstrip(Q
Return a copy of string with trailing whitespace removed.

strip()
Return a copy of string with leading and trailing whitespace removed.

swapcase ()
Return a copy of string with uppercase characters converted to lowercase and vice versa.

title()
Return a copy of string with words starting with uppercase characters, all remaining characters in
lowercase.

translate(table, [deletechars])
Return a copy of the string, where all characters occurring in the optional argument deletechars are
removed, and the remaining characters have been mapped through the given translation table. The
table must be a string of length 256, providing a translation for each 1-byte ASCII character.

The translation tables are built using the string.maketrans() function in the string module.

upper ()
Return a copy of string converted to uppercase.

The following accessor methods provide information about a string.

count (sub, [start/, [end])
Return the number of occurrences of substring sub in string. If start or end are present, these have
the same meanings as a slice ‘string[start:end]’.

endswith (suffiz, [start], [end])
Return True if string ends with the specified suffix, otherwise return False. The suffix can be a
single string or a sequence of individual strings. If start or end are present, these have the same
meanings as a slice ‘string[start:end]’.

find (sub, [start], [end])
Return the lowest index in string where substring sub is found. Return -1 if the substring is not found.
If start or end are present, these have the same meanings as a slice ‘string[start:end]’.

13.7. String Methods 149

Building Skills in Python, Release 2.6.5

index (sub, [start], [end])
Return the lowest index in string where substring sub is found. Raise ValueError if the substring is
not found. If start or end are present, these have the same meanings as a slice ‘string[start:end]’.

isalnum()
Return True if all characters in string are alphanumeric and there is at least one character in string;
False otherwise.

isalpha()
Return True if all characters in string are alphabetic and there is at least one character in string; False
otherwise.

isdigit()
Return True if all characters in string are digits and there is at least one character in string; False
otherwise.

islower()
Return True if all characters in string are lowercase and there is at least one cased character in string;
False otherwise.

isspace()
Return True if all characters in string are whitespace and there is at least one character in string,
False otherwise.

istitle()
Return True if string is titlecased. Uppercase characters may only follow uncased characters (whites-
pace, punctuation, etc.) and lowercase characters only cased ones, False otherwise.

isupper ()
Return True if all characters in string are uppercase and there is at least one cased character in string;
False otherwise.

rfind (sub, [start], [end])
Return the highest index in string where substring sub is found. Return -1 if the substring is not
found. If start or end are present, these have the same meanings as a slice ‘string[start:end]’.

rindex (sub, [start], [end])
Return the highest index in string where substring sub is found. Raise ValueError if the substring is
not found.. If start or end are present, these have the same meanings as a slice ‘string[start:end]’.

startswith(sub, [start], [end)])
Return True if string starts with the specified prefix, otherwise return False. The prefix can be a
single string or a sequence of individual strings. If start or end are present, these have the same
meanings as a slice ‘string[start:end]’

The following generators create another kind of object, usually a sequence, from a string.

partition(separator)
Return three values: the text prior to the first occurance of separator in string, the sep as the
delimiter, and the text after the first occurance of the separator. If the separator doesn’t occur, all of
the input string is in the first element of the 3-tuple; the other two elements are empty strings.

split (separator, [mazxsplit])
Return a 1ist of the words in the string, using separator as the delimiter. If maxsplit is given, at
most maxsplit splits are done. If separator is not specified, any whitespace characater is a separator.

splitlines (keepends)
Return a 1ist of the lines in string, breaking at line boundaries. Line breaks are not included in the
resulting 1ist unless keepends is given and set to True.

150 Chapter 13. Strings

Building Skills in Python, Release 2.6.5

13.8 String Modules

There is an older module named string. Almost all of the functions in this module are directly available
as methods of the string type. The one remaining function of value is the maketrans() function, which

creates a translation table to be used by the translate() method of a string.

maketrans (from, to)

Return a translation table (a string 256 characters long) suitable for use in str.translate(). The
from and to parameters must be strings of the same length. The table will assure that each character

in from is mapped to the character in the same position in to.

The following example shows how to make and then apply a translation table.

>>> import string
>>> t= string.maketrans("aeiou","xxxxx")
>>> phrase= "now is the time for all good men to come to the aid of their party"

>>> phrase.translate(t)
'nxw xs thx txmx fxr x11 gxxd mxn tx cxmx tx thx xxd xf thxxr pxrty'

The codecs module takes a different approach and has a number of built-in translations.

More importantly, this module contains a number of definitions of the characters in the ASCII character set.
These definitions serve as a central, formal repository for facts about the character set. Note that there are

general definitions, applicable to Unicode character setts, different from the ASCII definitions.

ascii_ letters The set of all letters, essentially a union of ascii_lowercase and
ascii_uppercase.

ascii_ lowercase The lowercase letters in the ASCII character set:
'abcdefghijklmnopgrstuvwxyz'

ascii__uppercase The uppercase letters in the ASCII character set:
' ABCDEFGHIJKLMNOPQRSTUVWXYZ'

digits The digits used to make decimal numbers: '0123456789'
hexdigits The digits used to make hexadecimal numbers: '0123456789abcdefABCDEF"

letters This is the set of all letters, a union of lowercase and uppercase, which depends on
the setting of the locale on your system.

lowercase This is the set of lowercase letters, and depends on the setting of the locale on your
system.

octdigits The digits used to make octal numbers: '01234567"'

printable All printable characters in the character set. This is a union of digits, letters, punc-
tuation and whitespace.

punctuation All punctuation in the ASCII character set, this is

Pglst Ox+,-./5<=>7@\1"_"{|}~

uppercase This is the set of uppercase letters, and depends on the setting of the locale on your
system.

whitespace A collection of characters that cause spacing to happen. For ASCII this is
"\t\n\x0b\x0c\r"

13.8. String Modules

151

Building Skills in Python, Release 2.6.5

13.9 String Exercises

1. Check Amount Writing.

Translate a number into the English phrase.

This example algorithm fragment is only to get you started. This shows how to pick off the digits from
the right end of a number and assemble a resulting string from the left end of the string.

Note that the right-most two digits have special names, requiring some additional cases above and
beyond the simplistic loop shown below. For example, 291 is “two hundred ninety one”, where 29 is
“twenty nine”. The word for “2” changes, depending on the context.

As a practical matter, you should analyze the number by taking off three digits at a time, the expression
‘(number % 1000)’ does this. You would then format the three digit number with words like “million”,
“thousand”, etc.

English Words For An Amount, n

(a) Initialization.
Set result «— 77
Set tc «— 0. This is the “tens counter” that shows what position we’re examining.
(b) Loop. While n > 0.
i. Get Right Digit. Set digit < n%10, the remainder when divided by 10.

ii. Make Phrase. Translate digit to a string from “zero” to “nine”. Translate tc to a string
from “” to “thousand”. This is tricky because the “teens” are special, where the “hundreds”
and “thousands” are pretty simple.

iii. Assemble Result. Prepend digit string and tc string to the left end of the result string.

iv. Next Digit. n < |n + 10]|. Be sure to use the ‘//’ integer division operator, or you’ll get
floating-point results.

Increment tc by 1.

(¢) Result. Return result as the English translation of n.

2. Roman Numerals.

This is similar to translating numbers to English. Instead we will translate them to Roman Numerals.

The Algorithm is similar to Check Amount Writing (above). You will pick off successive digits, using
%10’ and /10’ to gather the digits from right to left.

The rules for Roman Numerals involve using four pairs of symbols for ones and five, tens and fifties,
hundreds and five hundreds. An additional symbol for thousands covers all the relevant bases.

When a number is followed by the same or smaller number, it means addition. “II” is two 1’s = 2.
“VI”is b + 1 =6.

When one number is followed by a larger number, it means subtraction. “IX” is 1 before 10 = 9. “IIX”
isn’t allowed, this would be “VIII”.

For numbers from 1 to 9, the symbols are “I” and “V”, and the coding works like this.
(a) “:[77
(b) LLII”

152

Chapter 13. Strings

Building Skills in Python, Release 2.6.5

(c) “IIT”
(d) “IV”
(e) V"
(f) “VI”
() “VIT
(h) “vIII”
(i) “IX”

The same rules work for numbers from 10 to 90, using “X” and “L”. For numbers from 100 to 900,
using the symbols “C” and “D”. For numbers between 1000 and 4000, using “M”.

Here are some examples. 1994 = MCMXCIV, 1956 = MCMLVI, 3888= MMMDCCCLXXXVIII
3. Word Lengths.

Analyze the following block of text. You’ll want to break into into words on whitespace boundaries.
Then you’ll need to discard all punctuation from before, after or within a word.

What’s left will be a sequence of words composed of ASCII letters. Compute the length of each word,
and produce the sequence of digits. (no word is 10 or more letters long.)

Compare the sequence of word lenghts with the value of ‘math.pi’

Poe, E.
Near a Raven

Midnights so dreary, tired and weary,

Silently pondering volumes extolling all by-now obsolete lore.
During my rather long nap - the weirdest tap!

An ominous vibrating sound disturbing my chamber's antedoor.
"This", I whispered quietly, "I ignore".

This is based on http://www.cadaeic.net/cadenza.htm.

13.10 Digression on Immutability of Strings

In Strings and Tuples we noted that string and tuple objects are immutable. They cannot be changed once
they are created. Programmers experienced in other languages sometimes find this to be an odd restriction.

Two common questions that arise are how to expand a string and how to remove characters from a string.

Generally, we don’t expand or contract a string, we create a new string that is the concatenation of the
original string objects. For example:

>>> a="abc"
>>> a=a+"def"
>>> a
'abcdef'

In effect, Python gives us string objects of arbitrary size. It does this by dynamically creating a new string
instead of modifying an existing string.

Some programmers who have extensive experience in other languages will ask if creating a new string
from the original string is the most efficient way to accomplish this. Or they suggest that it would be

13.10. Digression on Immutability of Strings 153

http://www.cadaeic.net/cadenza.htm

Building Skills in Python, Release 2.6.5

“simpler” to allow a mutable string for this kind of concatenation. The short answer is that Python’s
storage management makes this use of immutable string the simplest and most efficient.

Responses to the immutability of tuple and mutability of list vary, including some of the following fre-
quently asked questions.

Since a 1ist does everything a tuple does and is mutable, why bother with tuple?

Immutable tuple objects are more efficient than variable-length 1ist objects for some operations. Once
the tuple is created, it can only be examined. When it is no longer referenced, the normal Python garbage
collection will release the storage for the tuple.

Most importantly, a tuple can be reliably hashed to a single value. This makes it a usable key for a mapping.

Many applications rely on fixed-length tuples. A program that works with coordinate geometry in two
dimensions may use 2-tuples to represent (z, y) coordinate pairs. Another example might be a program
that works with colors as 3-tuples, (r, g, b), of red, green and blue levels. A variable-length 1list is not
appropriate for these kinds of fixed-length tuple.

Wouldn’t it be “more efficient” to allow mutable string s?
There are a number of axes for efficiency: the two most common are time and memory use.

A mutable string could use less memory. However, this is only true in the benign special case where we
are only replacing or shrinking the string within a fixed-size buffer. If the string expands beyond the
size of the buffer the program must either crash with an exception, or it must switch to dynamic memory
allocation. Python simply uses dynamic memory allocation from the start. C programs often have serious
security problems created by attempting to access memory outside of a string buffer. Python avoids this
problem by using dynamic allocation of immutable string objects.

Processing a mutable string could use less time. In the cases of changing a string in place or removing
characters from a string, a fixed-length buffer would require somewhat less memory management overhead.
Rather than indict Python for offering immutable string, this leads to some productive thinking about
string processing in general.

In text-intensive applications we may want to avoid creating separate string objects. Instead, we may want
to create a single string object — the input buffer — and work with slices of that buffer. Rather than create
string, we can create slice objects that describe starting and ending offsets within the one-and-only input
buffer.

If we then need to manipulate these slices of the input buffer, we can create new string objects only as
needed. In this case, our application program is designed for efficiency. We use the Python string objects
when we want flexibility and simplicity.

154 Chapter 13. Strings

CHAPTER

FOURTEEN

TUPLES

We'll look at tuple from a number of viewpoints: semantics, literal values, operations, comparison operators,
statements, built-in functions and methods.

Additionally, we have a digression on the ¥ operator in Digression on The Sigma Operator.

14.1 Tuple Semantics

A tuple is a container for a fixed sequence of data objects. The name comes from the Latin suffix for
multiples: double, triple, quadruple, quintuple.

Mathematicians commonly consider ordered pairs; for instance, most analytical geometry is done with Carte-
sian coordinates (z, y). An ordered pair can be generalized as a 2-tuple.

An essential ingredient here is that a tuple has a fixed and known number of elements. A 3-dimensional point
is a 3-tuple. An CMYK color code is a 4-tuple. The size of the tuple can’t change without fundamentally
redefining the problem we're solving.

A tuple is an immutable sequence of Python objects. Since it is a sequence, all of the common operations
to sequences apply. Since it is immutable, it cannot be changed. Two common questions that arise are how
to expand a tuple and how to remove objects from a tuple.

When someone asks about changing an element inside a tuple, either adding, removing or updating, we have
to remind them that the 1ist, covered in Lists, is for dynamic sequences of elements. A tuple is generally
applied when the number of elements is fixed by the nature of the problem.

This tuple processing even pervades the way functions are defined. We can have positional parameters
collected into a tuple, something we’ll cover in Advanced Parameter Handling For Functions.

14.2 Tuple Literal Values

A tuple literal is created by surrounding objects with ‘()’ and separating the items with commas (‘,’). An
empty tuple is simple ‘()"

An interesting question is how Python tells an expression from a 1-tuple. A 1-element tuple has a single
comma, for example, ‘(1,)". An expression lacks the comma: (1). A pleasant consequence of this is that an
extra comma at the end of every tuple is legal; for example, ‘(9, 10, 56,)’

Examples:

155

Building Skills in Python, Release 2.6.5

xy= (2, 3)
personal= ('Hannah',14,5%12+6)
singleton= ("hello",)

xy A 2-tuple with integers.
personal A 3-tuple with a string and two integers

singleton A 1-tuple with a string. The trailing ¢,” assures that his is a tuple, not an expression.

The elements of a tuple do not have to be the same type. A tuple can be a mixture of any Python data
types, including other tuples.

14.3 Tuple Operations

There are three standard sequence operations (‘+’, ‘*’, ‘[1’) that can be performed with tuples as well as
other sequences.

The ‘+’ operator creates a new tuple as the concatenation of the arguments. Here’s an example.

>>> ("chapter",8) + ("strings","tuples","lists")
('chapter', 8, 'strings', 'tuples', 'lists')

The ‘*’ operator between tuple and number (number ‘*’ tuple or tuple ‘*’ number) creates a new tuple
that is a number of repetitions of the input tuple.

>>> 2*%(3,"blind","mice")
(3, 'blind', 'mice', 3, 'blind', 'mice')

The ‘[1’ operator selects an item or a slice from the tuple.
There are two forms: the single-item form and the slice form.

o The single item format is tuple [index]. Items are numbered from 0 to ‘len(tuple)’ Items are also
numbered in reverse from -‘len(tuple)’ to -1.

o The slice format is tuple [start : end]. Items from start to end -1 are chosen to create a new tuple
as a slice of the original tuple; there will be end — start items in the resulting tuple.

If start is omitted it is the beginning of the tuple (position 0).
If end is omitted it is the end of the tuple (position -1).

Yes, you can omit both (‘someTuple[:]’) to make a copy of a tuple. This is a shallow copy: the
original objects are now members of two distinct tuples.

>>> t=((2,3), (2,"hi"), (3,"mom"), 2+3j, 6.02E23)
>>> t[2]

(3, 'mom')

>>> t[:3]

(2, 3), (2, 'hi"), (3, 'mom'))
>>> t[3:]

((2+3j), 6.02e+23)

>>> t[-1]

6.02e+23

>>> t[-3:]

((3, 'mom'), (2+3j), 6.02e+23)

156 Chapter 14. Tuples

Building Skills in Python, Release 2.6.5

14.4 Tuple Comparison Operations

The standard comparisons (‘<’; ‘<=", >’/ ‘>=" ‘==’ ‘1="_in not in) work exactly the same among tuple
objects as they do among string and other sequences. The tuple pbjects are compared element by element.
If the corresponding elements are the same type, ordinary comparison rules are used. If the corresponding
elements are different types, the type names are compared, since there is almost no other rational basis for
comparison.

>>>a= (1, 2, 3, 4, 5)
>>> b 9, 8, 7, 6, 5)
>>> a <b

True

>>> 3 in a

True

>>> 3 in b

False

Here’s a longer example.

redblack.py

#!/usr/bin/env python
import random
n= random.randrange (38)
if n ==

print '0', 'green'
elif n == 37:

print '00', 'green'
elif n in (1,3,5,7,9, 12,14,16,18, 19,21,23,25,27, 30,32,34,36):

print n, 'red'
else:

print n, 'black'’

We import random.
We create a random number, n in the range 0 to 37.
We check for 0 and 37 as special cases of single and double zero.

If the number is in the tuple of red spaces on the roulette layout, this is printed.

AN I

If none of the other rules are true, the number is in one of the black spaces.

14.5 Tuple Statements

There are a number of statements that have specific features related to tuple objects.

The Assignment Statement. There is a variation on the assignment statement called a multiple-
assignment statement that works nicely with tuples. We looked at this in Multiple Assignment Statement.
Multiple variables are set by decomposing the items in the tuple.

For example:

14.4. Tuple Comparison Operations 157

Building Skills in Python, Release 2.6.5

>>>x, y = (1, 2)
>>> x

1

>>> y

2

An essential ingredient here is that a tuple has a fixed and known number of elements. For example a
2-dimensional geometric point might have a tuple with z and y. A 3-dimensional point might be a tuple
with z, y, and =z

This works well because the right side of the assignment statement is fully evaluated before the assignments
are performed. This allows things like swapping the values in two variables with ‘x,y=y,x’.

The for Statement. The for statement will step though all elements of a sequence.
For example:
s= 0
for i in (1,3,5,7,9, 12,14,16,18, 19,21,23,25,27, 30,32,34,36):
s += 1
print "total",s
This will step through each number in the given tuple.

There are three built-in functions that will transform a tuple into another sequence. The enumerate(),
sorted() and reversed() functions will provide the items of the tuple with their index, in sorted order or
in reverse order.

14.6 Tuple Built-in Functions

The tuple() function creates a tuple out of another sequence object.

tuple (sequence)
Create a tuple from another sequence. This will convert 1ist or str to a tuple.

Functions which apply to tuples, but are defined elsewhere.
e len(). For tuples, this function returns the number of items.
>>> len((1,1,2,3))
4

>>> len(())
0

e max (). For tuples, this function returns the maximum item.

>>> max((1,9973,2))
9973

e min(). For tuples, this function returns the minimum item.

e sum(). For tuples, this function sums the individual items.

>>> sum((1,9973,2))
9976

e any(). For tuples, Return True if there exists any item which is True.

158 Chapter 14. Tuples

Building Skills in Python, Release 2.6.5

>>> any((0,None,False))
False

>>> any((0,None,False,42))
True

>>> any((1,True))

True

e all(). For tuples, Return True if all items are True.

>>> all((0,None,False,42))
False

>>> all((1,True))

True

e enumerate(). Iterate through the tuple returning 2-tuples of ‘(index, item)’

In effect, this function “enumerates” all the items in a sequence: it provides a number and each element
of the original sequence in a 2-tuple.

for i, x in someTuple:
print "position", i, " has value ", x

Consider the following.

>>> a = (3.1415926, "Words", (2+3j))
>>> tuple(enumerate(a))
((0, 3.1415926000000001), (1, 'Words'), (2, (2+33)))

We created a tuple from the enumeration. This shows that each item of the enumeration is a 2-tuple
with the index number and an item from the original tuple.

e sorted(). Iterate through the tuple in sorted order.

>>> tuple(sorted((9,1,8,2,7,3)))

1, 2, 3,7, 8,9

>>> tuple(sorted((9,1,8,2,7,3), reverse=True))
(9, 8, 7, 3, 2, 1)

e reversed(). Iterate through the tuple in reverse order.

>>> tuple(reversed((9,1,8,2,7,3)))
(3,7, 2,8,1, 9

The following function returns a tuple.

divmod(z, y) -> (div, mod)
Return a 2-tuple with ‘((x-x%y)/y, x%y)’ The return values have the invariant: div X y + mod = x.
This is the quotient and the remainder in division.

The divmod () functions is often combined with multiple assignment. For example:

>>> q,r = divmod(355,113)
>>> q

3

>>> T

16

14.6. Tuple Built-in Functions 159

Building Skills in Python, Release 2.6.5

>>> q*113+r
355

14.7 Tuple Exercises

These exercises implement some basic statistical algorithms. For some background on the Sigma operator,
¥, see Digression on The Sigma Operator.

1. Blocks of Stock. A block of stock as a number of attributes, including a purchase date, a purchase
price, a number of shares, and a ticker symbol. We can record these pieces of information in a tuple
for each block of stock and do a number of simple operations on the blocks. Let’s dream that we have
the following portfolio.

Purchase Date | Purchase Price | Shares | Symbol | :Current Price”
25 Jan 2001 43.50 25 CAT 92.45
25 Jan 2001 42.80 50 DD 51.19
25 Jan 2001 42.10 75 EK 34.87
25 Jan 2001 37.58 100 GM 37.58

We can represent each block of stock as a 5-tuple with purchase date, purchase price, shares, ticker
symbol and current price.

portfolio= [("25-Jan-2001", 43.50, 25, 'CAT', 92.45),

("25-Jan-2001", 42.80, 50, 'DD', 51.19),
("25-Jan-2001", 42.10, 75, 'EK', 34.87),
("25-Jan-2001", 37.58, 100, 'GM', 37.58)

]

Develop a function that examines each block, multiplies shares by purchase price and determines the
total purchase price of the portfolio.

Develop a second function that examines each block, multiplies shares by purchase price and shares by
current price to determine the total amount gained or lost.

2. Mean. Computing the mean of a 1ist of values is relatively simple. The mean is the sum of the
values divided by the number of values in the 1ist . Since the statistical formula is so closely related
to the actual loop, we’ll provide the formula, followed by an overview of the code.

PORED
0<i<n
Moz =

n
[The cryptic-looking i, is a short-hand for “mean of variable x”.]

The definition of the ¥ mathematical operator leads us to the following method for computing the
mean:

Computing Mean

(a) Initialize. Set sum, s, to zero
(b) Reduce. For each value, 4, in the range 0 to the number of values in the list, n:

Set s «— s+ x;.

160 Chapter 14. Tuples

Building Skills in Python, Release 2.6.5

(c) Result. Return s +n.

3. Standard Deviation. The standard deviation can be done a few ways, but we’ll use the formula
shown below. This computes a deviation measurement as the square of the difference between each
sample and the mean. The sum of these measurements is then divided by the number of values times
the number of degrees of freedom to get a standardized deviation measurement. Again, the formula
summarizes the loop, so we’ll show the formula followed by an overview of the code.

Z (.’El - Ma:)Q

0<i<n
op=\|———"7-—
n—1

[The cryptic-looking o, is short-hand for “standard deviation of variable x”.]

The definition of the ¥ mathematical operator leads us to the following method for computing the
standard deviation:

Computing Standard Deviation

(a) Initialize. Compute the mean, m.
Initialize sum, s, to zero.

(b) Reduce. For each value, z; in the list:
Compute the difference from the mean, d «— x; — .
Set s « s+ d>.

(c) Variance. Compute the variance as —*5. The n — 1. factor reflects the statistical notion of

“degrees of freedom”, which is beyond the scope of this book.
(d) Standard Deviation. Return the square root of the variance.

The math module contains the math.sqrt () funtion. For some additional information, see The math
Module.

14.8 Digression on The Sigma Operator

For those programmers new to statistics, this section provides background on the Sigma operator, 3.

The usual presentation of the summation operator looks like this.

>0

The X operator has three parts to it. Below it is a bound variable, 7 and the starting value for the range,
written as i = 1. Above it is the ending value for the range, usually something like n. To the right is some
function to execute for each value of the bound variable. In this case, a generic function, f(¢). This is read
as “sum f (¢) for ¢ in the range 1 to n*

This common definition of ¥ uses a closed range; one that includes the end values of 1 and n. This, however,
is not a helpful definition for software. It is slightly simpler to define ¥ to start with zero and use a half-open
interval. It still exactly n elements, including 0 and n-1; mathematically, 0 < i < n.

For software design purposes, we prefer the following notation, but it is not often used. Since most sta-
tistical and mathematical texts use 1-based indexing, some care is required when translating formulae to

14.8. Digression on The Sigma Operator 161

Building Skills in Python, Release 2.6.5

programming languages that use 0-based indexing.

> f)

0<i<n
This shows the bound variable (i) and the range below the operator. It shows the function to execute on
the right of the operator.

Statistical Algorithms. Our two statistical algorithms have a form more like the following. In this we are
applying some function, f, to each value, x; of an array.

> fw)

0<i<n

When computing the mean, there the function applied to each value does nothing. When computing standard
deviation, the function applied involves subtracting and multiplying.

We can transform this definition directly into a for loop that sets the bound variable to all of the values in
the range, and does some processing on each value of the sequence of values.

This is the Python implemention of ¥. This computes two values, the sum, sum, and the number of elements,
n.

Python Sigma Iteration

sum= 0

for x_i in aSequence:
fx_i = some processing of x_i
sum += fx_i

n= len(aSequence)

1. Execute the body of the loop for all values of x_i in the sequence aSequence. The sequence can be a
tuple, list or other sequential container.

2. For simple mean calculation, the fx_i statement does nothing. For standard deviation, however, this
statement computes the measure of deviation from the average.

3. We sum the x_i values for a mean calculation. We sum f£x_i values for a standard deviation calculation.

162 Chapter 14. Tuples

CHAPTER

FIFTEEN

LISTS

We'll look at list from a number of viewpoints: semantics, literal values, operations, comparison operators,
statements, built-in functions and methods.

15.1 List Semantics

A list is a container for variable length sequence of Python objects. A 1ist is mutable, which means that
items within the 1ist can be changed. Also, items can be added to the 1ist or removed from the list.

Since a list is a sequence, all of the common operations to sequences apply.

Sometimes we’ll see a 1ist with a fixed number of elements, like a two-dimensional point with two elements,
xz and y. A fixed-length 1ist may not be the right choice; a tuple, covered in Tuples is usually better for
static sequences of elements.

A great deal of Python’s internals are 1ist -based. The for statement, in particular, expects a sequence,
and we often create a list by using the range() function. When we split a string using the split()
method, we get a 1ist of substrings.

15.2 List Literal Values

[

A 1list literal is created by surrounding objects with ‘[1’ and separating the items with commas (‘,’). A
list can be created, expanded and reduced. An empty list is simply ‘[]1’. As with tuple, an extra comma
at the end of the 1ist is gracefully ignored.

Examples:

myList = [2, 3, 4, 9, 10, 11, 12]
history = []

The elements of a 1ist do not have to be the same type. A list can be a mixture of any Python data
types, including lists, tuples, strings and numeric types.
A list permits a sophisticated kind of display called a comprehension. We’ll revisit this in some depth in

List Comprehensions. As a teaser, consider the following:

>>> [2*i+1 for i in range(6)]
[1, 3, 5, 7, 9, 11]

163

Building Skills in Python, Release 2.6.5

This statement creates a list using a list comprehension. A comprehension starts with a candidate list
(‘range(6)’, in this example) and derives the 1ist values from the candidate list (using ‘2*i+1’ in this
example). A great deal of power is available in comprehensions, but we’ll save the details for a later section.

15.3 List Operations

The three standard sequence operations (‘+’, ‘*’, ‘[17) can be performed with 1ist, as well as other sequences
like tuple and string.

The ‘+’ operator creates a new list as the concatenation of the arguments.

>>> ["field"] + [2, 3, 4] + [9, 10, 11, 12]
['field', 2, 3, 4, 9, 10, 11, 12]

The ‘*’ operator between 1ist and numbers (number ‘*’ list or list ‘*’ number) creates a new list that
is a number of repetitions of the input list.

>>> 2*["pass","don‘t","pass"]
['pass', "don't", 'pass', 'pass', "don't", 'pass']

The ‘[1’ operator selects an character or a slice from the 1ist. There are two forms: the single-item form
and the slice form.

o The single item format is list [index]. Items are numbered from 0 to ‘len(list)’ Items are also
numbered in reverse from -‘len(list)’ to -1.

o The slice format is list [start : end]. Ttems from start to end -1 are chosen to create a new list as a
slice of the original 1ist; there will be end — start items in the resulting list.

If start is omitted it is the beginning of the 1ist (position 0).
If end is omitted it is the end of the 1ist (position -1).

Yes, you can omit both (‘someList[:]1’) to make a copy of a list. This is a shallow copy: the original
objects are now members of two distinct lists.

In the following example, we’'ve constructed a 1ist where each element is a tuple. Each tuple could be a
pair of dice.

>>> 1=[(6, 2), (5, 4), (2, 2), (1, 3), (6, 5), (1, 4)]
>>> 1[2]

2, 2)

>>> 1[:3]

[(6, 2), (5, 4), (2, 2]
>>> 1[3:]

[(1, 3), (6, 5), (1, D]
>>> 1[-1]

(1, 4)

>>> 1[-3:]

[(1, 3), (6, 5, (1, D]

15.4 List Comparison Operations

¢ ’

The standard comparisons (‘<’, ‘<=’ >’ >=’ ‘==’ ‘I="_in, not in) work exactly the same among list,
tuple and string sequences. The list items are compared element by element. If the corresponding

164 Chapter 15. Lists

Building Skills in Python, Release 2.6.5

elements are the same type, ordinary comparison rules are used. If the corresponding elements are different
types, the type names are compared, since there is no other rational basis for comparison.

d1= random.randrange(6)+1
d2= random.randrange(6)+1
if d1+d2 in [2, 12] + [3, 4, 9, 10, 11]:
print "field bet wins on ", d1+d2
else:
print "field bet loses on ", di1+d2

This will create two random numbers, simulating a roll of dice. If the number is in the 1ist of field bets,
this is printed. Note that we assemble the final 1ist of field bets from two other 1ist objects. In a larger
application program, we might separate the different winner 1ist instances based on different payout odds.

15.5 List Statements

There are a number of statements that have specific features related to 1ist objects.

The Assignment Statement. The variation on the assignment statement called multiple-assignment
statement also works with lists. We looked at this in Multiple Assignment Statement. Multiple variables
are set by decomposing the items in the 1ist.

>>> %, y = [1, "hi"]
>>> x

1

>>> y

hit

This will only work of the 1list has a fixed and known number of elements. This is more typical when
working with a tuple, which is immutable, rather than a 1ist, which can vary in length.

The for Statement. The for statement will step though all elements of a sequence.

s= 0

for i in [2,3,5,7,11,13,17,19]:

s += 1
print "total",s

When we introduced the for statement in Iterative Processing: The for Statement, we showed the range ()
function; this function creates a 1ist. We can also create a list with a literal or comprehension. We've
looked at simple literals above. We’ll look at comprehensions below.

The del Statement. The del statement removes items from a 1list. For example
>>> i = range(10)
>>> del i[0], i[2], i[4], il[6]
>>> i
[1, 2, 4, 5, 7, 8]
This example reveals how the del statement works.
The i variable starts as the 1ist [0, 1, 2, 3, 4, 5, 6, 7, 8, 9 1.
1. Remove ‘i[0]’ and the variable is [1, 2, 3, 4, 5, 6, 7, 8, 9].
2. Remove ‘i[2]’ (the value 3) from this new list , and get [1, 2, 4, 5, 6, 7, 8, 9].

15.5. List Statements 165

Building Skills in Python, Release 2.6.5

3. Remove ‘i[4]’ (the value 6) from this new list and get [1, 2, 4, 5, 7, 8, 9].
4. Finally, remove ‘i[6]” and get [1, 2, 4, 5, 7, 8].

15.6 List Built-in Functions

The 1ist () function creates a list out of another sequence object.

list (sequence)
Create a list from another sequence. This will convert tuple or str to a list.

Functions which apply to tuples, but are defined elsewhere.
e len(). For lists, this function returns the number of items.
>>> len([1,1,2,3])
4

>>> len([])
0

e max (). For lists, this function returns the maximum item.

>>> max([1,9973,2])
9973

e min(). For lists, this function returns the minimum item.

e sum(). For lists, this function sums the individual items.

>>> sum([1,9973,2])
9976

e any (). For lists, Return True if there exists any item which is True.

>>> any([0,None,False])
False

>>> any([0,None,False,42])
True

>>> any([1,True])

True

e all(). For lists, Return True if all items are True.

>>> all([0,None,False,42])
False

>>> all([1,True])

True

e enumerate (). Iterate through the list returning 2-tuples of ‘(index, item)’

In effect, this function “enumerates” all the items in a sequence: it provides a number and each element
of the original sequence in a 2-tuple.

for i, x in somelist:
print "position", i, " has value ", x

Consider the following list of tuples.

166 Chapter 15. Lists

Building Skills in Python, Release 2.6.5

>>> a = [("pi",3.1415946),("e",2.718281828), ("mol",6.02E23)]
>>> list(enumerate(a))
[(0, ('pi', 3.1415945999999999)), (1, ('e', 2.7182818279999998)
02e+23))]
>>> for i, t in enumerate(a):

print "item",i,"is",t

item 0 is ('pi', 3.1415945999999999)
item 1 is ('e', 2.7182818279999998)
item 2 is ('mol', 6.02e+23)

e sorted(). Iterate through the list in sorted order.

>>> 1list(sorted([9,1,8,2,7,3]))

[1, 2, 3, 7, 8, 9]

>>> tuple(sorted([9,1,8,2,7,3], reverse=True))
[e, 8, 7, 3, 2, 11

e reversed(). Iterate through the list in reverse order.

>>> tuple(reversed([9,1,8,2,7,3]))
(3, 7, 2,8, 1, 9]
The following function returns a list.

range ([start], stop, [step])
The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. step must not be zero (or else ValueError is raised).

The full form returns a 1ist of plain integers [start, start + step, start + 2 x step, ...

If step is positive, the last element is the largest start +1i x step < stop; ; if step is negative, the last
element is the largest start 4+ ¢ X step > stop.

15.7 List Methods

A 1list object has a number of member methods. These can be grouped arbitrarily into mutators, which
change the list, transformers which create something new from the 1ist, and and accessors, which returns
a fact about a list.

The following 1ist mutators update a 1ist object. Generally, these do not return a value.
In the case of the pop() method, it both returns information as well as mutates the list.

append (object)
Update list by appending object to end of the list.

extend (list)
Extend list by appending 1ist elements. Note the difference from append () , which treats the argument
as a single 1ist object.

insert (index, object)
Update 1list [by inserting object before position index. If index is greater than ‘len(list)’, the
object is simply appended. If index is less than zero, the object is prepended.

15.7. List Methods 167

Building Skills in Python, Release 2.6.5

pop ([index=-1])
Remove and return item at index (default last, -1) in list. An exception is raised if the list is already
empty.

remove (value)
Remove first occurrence of value from list. An exception is raised if the value is not in the list.

reverse()
Reverse the items of the list. This is done “in place”, it does not create a new 1ist. There is no return
value.

sort ([key/, [reverse=False])
Sort the items of the list. This is done “in place”, it does not create a new list.

If the reverse keyword parameter is provided and set to True, the tuple is sorted into descending
order.

The key parameter is used when the items in the tuple aren’t simply sorted using the default comparison
operators. The key function must return the fields to be compared selected from the underlying items
in the tuple.

We'll look at this in detail in Functional Programming with Collections.
The following accessor methods provide information about a 1ist.

count (value)
Return number of occurrences of value in list.

index (value)
Return index of first occurrence of value in list.

Stacks and Queues. The list.append() and list.pop() functions can be used to create a standard
push-down stack, or last-in-first-out (LIFO) 1ist. The append() method places an item at the end of the
list (or top of the stack), where the pop() method can remove it and return it.

>>> stack = []

>>> stack.append (1)

>>> stack.append("word")

>>> stack.append(("a","2-tuple"))

>>> stack.pop()

('a', '2-tuple')

>>> stack.pop()

'word'

>>> stack.pop()

1

>>> len(stack)

0

>>> stack.pop()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: pop from empty list

The 1list.append() and list.pop() functions can be used to create a standard queue, or first-in-first-out
(FIFO) 1ist. The append () method places an item at the end of the queue. A call to ‘pop(0)’ removes the
first item from the queue and returns it.

>>> queue = []

>>> queue.append(1)

>>> queue.append("word")

>>> queue.append(("a","2-tuple"))

168 Chapter 15. Lists

Building Skills in Python, Release 2.6.5

>>> queue.pop(0)

1

>>> queue.pop(0)

'word'

>>> queue.pop(0)

('a', '2-tuple')

>>> len(queue)

0

>>> queue.pop(0)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: pop from empty list

15.8 Using Lists as Function Parameter Defaults

It’s very, very important to note that default values must be immutable objects. Recall that numbers,
strings, None, and tuple objects are immutable.

We note that lists as well as sets and dictionaries are mutable, and cannot be used as default values for
function parameters.

Consider the following example of what not to do.

>>> def append2(someList=[]):
someList.append(2)
return somelList

>>> looks_good= []

>>> append2(looks_good)
[2]

>>> append2(looks_good)
[2, 2]

>>> looks_good

[2, 2]

>>>

>>>

>>> not_good= append2()
>>> not_good

[2]

>>> worse= append2()
>>> worse

[2, 2]

>>> not_good

[2, 2]

1. We defined a function which has a default value that’s a mutable object. This is simple a bad pro-
gramming practice in Python.
2. We used this function with a list object, looks_good. The function updated the list object as expected.

3. We used the function’s default value to create not_good. The function appended to an empty list and
returned this new list object.

It turns out that the function updated the mutable default value, also.

4. When we use the function’s default value again, with worse, the function uses the updated default
value and updates it again.

15.8. Using Lists as Function Parameter Defaults 169

Building Skills in Python, Release 2.6.5

Both not_good and worse are references to the same mutable object that is being updated.
To avoid this, do not use mutable values as defaults. Do this instead.
def append2(someList=None):
if somelList is None:
someList= []

someList.append(2)
return somelList

This creates a fresh new mutable object as needed.

15.9 List Exercises

1. Accumulating Distinct Values. This uses the Bounded Linear Search algorithm to locate duplicate
values in a sequence. This is a powerful technique to eliminate sorting from a wide variety of summary-
type reports. Failure to use this algorithm leads to excessive processing in many types of applications.

Distinct Values of a Sequence, seq

(a) Initialize Distinct Values. Set dv « list().
(b) Loop. For each value, v, in seq.
We'll use the Bounded Linear Search to see if v occurs in dv.
i. Initialize. Set 7 < 0.
Append v to the list dv.
ii. Search. while dv[i] # v: increment i.
At this point dv[i] = v. The question is whether ¢ = len(dv) or not.
iii. New Value?. if ¢ = len(dv): v is distinct.
iv. Existing Value?. if i # len(dv): v is a duplicate of dvli].
Delete dv[—1], the value we added.
(¢) Result. Return array dv, which has distinct values from seq.

You may also notice that this fancy Bounded Linear Search is suspiciously similar to the index()
method function of a list. Rewrite this using ‘uniq.index’ instead of the Bounded Linear Search in
step 2.

When we look the set collection, you’ll see another way to tackle this problem.

2. Binary Search. This is not as universally useful as the Bounded Linear Search (above) because it
requires the data be sorted.

Binary Search a sorted Sequence, seq, for a target value, tgt

(a) Initialize. I, h < 0,len(seq).
m «— (I + h) <+ 2. This is the midpoint of the sorted sequence.

170 Chapter 15. Lists

Building Skills in Python, Release 2.6.5

(b) Divide and Conquer. While I + 1 < h and seq[m] # tgt.
If tgt < seq[m]: h < m. Move h to the midpoint.
If tgt > seq[m]: | < m + 1. Move [to the midpoint.
m «— (I + h) + 2. Compute a midpoint of the new, smaller sequence.
(c) Result. If tgt = seq[m]: return m
If tgt # seq[m]: return -1 as a code for “not found”.
3. Quicksort. The super-fast sort routine

As a series of loops it is rather complex. As a recursion it is quite short. This is the same basic
algorithm in the C libraries.

Quicksort proceeds by partitioning the 1ist into two regions: one has all of the high values, the other
has all the low values. Each of these regions is then individually sorted into order using the quicksort
algorithm. This means the each region will be subdivided and sorted.

For now, we’ll sort an array of simple numbers. Later, we can generalize this to sort generic objects.

Quicksort a List, a between elements lo and hi

(a) Partition
i. Initialize. [s, hs < lo, hi. Setup for partitioning between Is and hs.
middle «— (Is + hs) + 2.
ii. Swap To Partition. while Is < hs:

If a[ls].key < a|middle].key: increment Is by 1. Move the low boundary of the
partitioning.

If alls].key > almiddle].key: swap the values a[ls] = a[middle].

If a[hs].key > a[middle].key: decrement hs by 1. Move the high boundary of the
partitioning.

If alhs].key < a[middle].key:, swap the values a[hs] S a[middle].
(b) Quicksort Each Partition.
QuickSort(a , lo, middle)
QuickSort(a , middle+1, hi)

4. Recursive Search. This is also a binary search: it works using a design called “divide and conquer”.
Rather than search the whole 1ist, we divide it in half and search just half the 1ist. This version,
however is defined with a recusive function instead of a loop. This can often be faster than the looping
version shown above.

Recursive Search a List, seq for a target, tgt, in the region between elements lo
and hi.

(a) Empty Region? If lo + 1 > hi: return -1 as a code for “not found”.
(b) Middle Element. m «— (lo + hi) + 2.

(¢) Found? If seq[m] = tgt: return m.

15.9. List Exercises 171

Building Skills in Python, Release 2.6.5

(d) Lower Half? If seq[m] < tgt: return recursiveSearch (seq, tgt, lo, m)
(e) Upper Half? If seq[m] > tgt: return recursiveSearch(seq, tgt, m+1, hi)

5. Sieve of Eratosthenes. This is an algorithm which locates prime numbers. A prime number can
only be divided evenly by 1 and itself. We locate primes by making a table of all numbers, and then
crossing out the numbers which are multiples of other numbers. What is left must be prime.

Sieve of Eratosthenes

(a) Initialize. Create a list, prime of 5000 booleans, all True, initially.
p— 2.
(b) Iterate. While 2 < p < 5000.
i. Find Next Prime. While not prime[p] and 2 < p < 5000:
Increment p by 1.
ii. Remove Multiples. At this point, p is prime.
Set k «— p+p.
while k& < 5000.
primelk] < False.
Increment & by p.
iii. Next p. Increment p by 1.
(¢c) Report. At this point, for all p, if prime [p | is true, p is prime.
while 2 < p < 5000:
if prime[pl: print p

The reporting step is a “filter” operation. We're creating a list from a source range and a filter rule.
This is ideal for a list comprehension. We’ll look at these in List Comprehensions.

Formally, we can say that the primes are the set of values defined by primes = {plo<p<sooo if prime,}.
This formalism looks a little bit like a list comprehension.

6. Polynomial Arithmetic. We can represent numbers as polynomials. We can represent polynomials
as arrays of their coefficients. This is covered in detail in [Knuth73], section 2.2.4 algorithms A and M.

Example: 423 + 3z + 1 has the following coefficients: ‘¢ 4, 0, 3, 1)’

The polynomial 222 — 3z — 4 is represented as ‘(2, -3, -4)’

The sum of these is 423 + 222 —3; “(4, 2, 0, -3)"

The product these is 82° — 122* — 1023 — 722 — 152 — 4; ‘(8, -12, -10, -7, -15, -4)’

You can apply this to large decimal numbers. In this case, x is 10, and the coefficients must all be
between 0 and 2-1. For example, 1987 = 123 + 922 + 82 + 7, when z = 10.

Add Polynomials, p, g

(a) Result Size. ry, <« the larger of len(p) and len(q).
(b) Pad P? If len(p) < rs,:

172 Chapter 15. Lists

Building Skills in Python, Release 2.6.5

Set pI to a tuple of 5, — len(p) zeros + p.
Else: Set p1 to p.
(¢) Pad Q7 If len(q) < 7,:
Set g1 t a tuple of rs, — len(q) zeroes + q.
Else, Set g1 to q.
(d) Add. Add matching elements from p! and ¢I to create result, r.

(e) Result. Return r as the sum of p and q.

Multiply Polynomials, x, y

(a) Result Size. ry, — len(z) + len(y).
Initialize the result list, r, to all zeros, with a size of 7.
(b) For all elements of x. while 0 <4 < len(x):
For all elements of y. while 0 < j < len(y):
Set r[i + 7] = rli + 7] + «[i] x y[j].
(c) Result. Return a tuple made from r as the product of z and y.

7. Random Number Evaluation. Before using a new random number generator, it is wise to evaluate
the degree of randomness in the numbers produced. A variety of clever algorithms look for certain
types of expected distributions of numbers, pairs, triples, etc. This is one of many random number
tests.

Use random.random() to generate an array of random samples. These numbers will be uniform over
the interval 0..1

Distribution test of a sequence of random samples, U

(a) Initialize. Initialize count to a list of 10 zeros.
(b) Examine Samples. For each sample value, v, in the original set of 1000 random samples, U.

i. Coerce Into Range. Set = < |[v x 10|. Multiply by 10 and truncate and integer to get a a
new value in the range 0 to 9.

ii. Count. Increment count [z] by 1.

(c) Report. We expect each count to be 1/10th of our available samples. We need to display the
actual count and the % of the total. We also need to calculate the difference between the actual
count and the expected count, and display this.

8. Dutch National Flag. A challenging problem, one of the hardest in this set. This is from Edsger
Dijkstra’s book, A Discipline of Programming [Dijkstra76].

Imagine a board with a row of holes filled with red, white, and blue pegs. Develop an algorithm which
will swap pegs to make three bands of red, white, and blue (like the Dutch flag). You must also satisfy
this additional constraint: each peg must be examined exactly once.

Without the additional constraint, this is a relatively simple sorting problem. The additional constraint
requires that instead of a simple sort which passes over the data several times, we need a more clever
sort.

15.9. List Exercises 173

Building Skills in Python, Release 2.6.5

Hint: You will need four partitions in the array. Initially, every peg is in the “Unknown” partition.
The other three partitions (“Red”, “White” and “Blue”) are empty. As the algorithm proceeds, pegs
are swapped into the Red, White or Blue partition from the Unknown partition. When you are done,
the unknown partition is reduced to zero elements, and the other three partitions have known numbers
of elements.

174 Chapter 15. Lists

CHAPTER

SIXTEEN

MAPPINGS AND DICTIONARIES

Many algorithms need to map a key to a data value. This kind of mapping is supported by the Python
dictionary, dict. We’ll look at dictionaries from a number of viewpoints: semantics, literal values, operations,
comparison operators, statements, built-in functions and methods.

We are then in a position to look at two applications of the dictionary. We’ll look at how Python uses
dictionaries along with sequences to handle arbitrary connections of parameters to functions in Advanced
Parameter Handling For Functions. This is a very sophisticated set of tools that let us define functions that
are very flexible and easy to use.

16.1 Dictionary Semantics

A dictionary, called a dict, maps a key to a value. The key can be any type of Python object that computes
a consistent hash value. The value referenced by the key can be any type of Python object.

There is a subtle terminology issue here. Python has provisions for creating a variety of different types
of mappings. Only one type of mapping comes built-in; that type is the dict. The terms are almost
interchangeable. However, you may develop or download other types of mappings, so we’ll be careful to
focus on the dict class.

Working with a dict is similar to working with a sequence. Items are inserted into the dict, found in the
dict and removed from the dict. A dict object has member methods that return a sequence of keys, or
values, or (key , value) tuples suitable for use in a for statement.

Unlike a sequence, a dict does not preserve order. Instead of order, a dict uses a hashing algorithm to
identify each item’s place in the dict with a rapid calculation of the key’s hash value. The built-in function,
hash() is used to do this calculation. Items in the dict are inserted in an position related to their key’s
apparently random hash values.

Some Alternate Terminology. A dict can be thought of as a container of (key : value) pairs. This can
be a helpful way to imagine the information in a mapping. Each pair in the list is the mapping from a key
to an associated value.

A dict can be called an associative array. Ordinary arrays, typified by sequences, use a numeric index, but
a dict‘s index is made up of the key objects. Each key is associated with (or “mapped to”) the appropriate
value.

Some Consequences. Each key object has a hash value, which is used to place the value in the dict.
Consequently, the keys must have consistent hash values; they must be immutable objects. You can’t use
list, dict or set objects as keys. You can use tuple, string and frozenset objects, since they are
immutable. Additionally, when we get to class definitions (in Classes), we can make arrangements for our
objects to return an immutable hash value.

175

Building Skills in Python, Release 2.6.5

A common programming need is a heterogeneous container of data. Database records are an example. A
record in a database might have a boat’s name (as a string), the length overall (as a number) and an
inventory of sails (a list of strings). Often a record like this will have each element (known as a field)
identified by name.

A C or C++ ‘struct’ accomplishes this. This kind of named collection of data elements may be better
handled with a class (someting we’ll cover in Classes) or a named tuple (see collections). However, a
mapping is also useful for managing this kind of heterogeneous data with named fields.

Note that many languages make record definitions a statically-defined container of named fields. A Python
dict is dynamic, allowing us to add field names at run-time.

A common alternative to hashing is using some kind of ordered structure to maintain the keys. This might
be a tree or list, which would lead to other kinds of mappings. For example, there is an ordered dictionary,
in the Python collections module.

16.2 Dictionary Literal Values

A dict literal is created by surrounding a key-value list with ‘{}’; a key is separated from its value with ‘:’,
and the ‘key : wvalue’ pairs are separated with commas (‘,”). An empty dict is simply ‘{}. As with list
and tuple, an extra ‘,’ inside the ‘{}’ is tolerated.

Examples:

diceRoll = { (1,1): "snake eyes", (6,6): "box cars" }
myBoat = { "NAME":"KaDiMa", "LOA":18, "SAILS":["main","jib","spinnaker"] }
theBets = { }

diceRoll This is a dict with two elements. One element has a key of a tuple (1,1) and a value
of a string, "snake eyes". The other element has a key of a tuple (6,6) and a value of
a string "box cars'.

myBoat This variable is a dict with three elements. One element has a key of the string
"NAME" and a value of the string "KaDiMa". Another element has a key of the string
"LOA" and a value of the integer 18. The third element has a key of the string "SAILS"
and the value of a 1ist ["main", "jib", "spinnaker"].

theBets An empty dict.

The values and keys in a dict do not have to be the same type. Keys must be a type that can produce a hash
value. Since list s and dict objects are mutable, they are not permitted as keys. All other non-mutable
types (especially string, frozenset and tuple) are legal keys.

16.3 Dictionary Operations

A dict only permits a single operation: ‘[]’. This is used to add, change or retrieve items from the dict.
The slicing operations that apply to sequences don’t apply to a dict.

Examples of dict operations.

>>> d= {}

>>>d[2] = [(1,1)]

>>> d[3] = [(1,2), (2,1)]
>>> d

{2: [(1, DI, 3: [(1, 2), (2, DI}

176 Chapter 16. Mappings and Dictionaries

Building Skills in Python, Release 2.6.5

>>> d[2]

[(1, DI

>>> d["2 or 3"] = d[2] + d[3]

>>> d

{'2 or 3': [(1, 1), (1, 2, (2, I, 2: [(1, DI, 3: [(1, 2), (2, DI}

1. This example starts by creating an empty dict, d.
2. Into ‘d[2]’ we insert a 1list with a single tuple.

3. Into ‘d[3]’ we insert a 1ist with two tuples.
4

. When the entire dict is printed it shows the two key:value pairs, one with a key of 2 and another with
a key of 3.

5. The entry with a key of the string "2 or 3" has a value which is computed from the values of ‘d[2] +
d[3]". Since these two entries are 1ists, the 1ists can be combined with the + operator. The resulting
expression is stored into the dict.

6. When we print d, we see that there are three key:value pairs: one with a key of 3, one with a key of 2
and one with a key of "2 or 3" .

This ability to use any object as a key is a powerful feature, and can eliminate some needlessly complex
programming that might be done in other languages.

Here are some other examples of picking elements out of a dict.

>>> myBoat = { "NAME":"KaDiMa", "LOA":18,

.. "SAILS":["main","jib","spinnaker"] }

>>> myBoat ["NAME"]

'KaDiMa'

>>> myBoat ["SAILS"] .remove("spinnaker")

>>> myBoat

{'LOA': 18, 'NAME': 'KaDiMa', 'SAILS': ['main', 'jib'l}

String Formatting with Dictionaries. The string formatting operator, %, can be applied between
str and dict as well as str and sequence. When this operator was introduced in Strings, the format
specifications were applied to a tuple or other sequence. When used with a dict, each format specification
is given an additional option that specifies which dict element to use. The general format for each conversion
specification is:

%(element) [flags][
width [. precision]] code

The flags, width, precision and code elements are defined in Strings. The element field must be enclosed in
()’s; this is the key to be selected from the dict.

For example:

print " s " % myBoat

This will find ‘myBoat [NAME]’ and use ‘%s’ formatting; it will find ‘myBoat [LOA]’ and use ‘/%d’ number
formatting.

16.3. Dictionary Operations 177

Building Skills in Python, Release 2.6.5

16.4 Dictionary Comparison Operations

Some of the standard comparisons (‘<’ , ‘<=7 | >’ | >=’ ‘==’ ‘1=’) don’t have a lot of meaning between

two dictionaries. Since there may be no common keys, nor even a common data type for keys, dictionaries
are simply compared by length. The dict with fewer elements is considered less than a dict with more
elements.

The membership comparisons (in, not in) apply to the keys of the dictionary.
>>> colors = { "blue": (0x30,0x30,0xff), "green": (0x30,0xff,0x97),

. "red": (0xff,0x30,0x97), "yellow": (Oxff,O0xff,0x30) }
>>> "blue" in colors

True

>>> (0x30,0x30,0xff) in colors
False

>>> "orange" not in colors
True

16.5 Dictionary Statements

There are a number of statements that have specific features related to dict objects.
The for Statement. The for statement iterates through the keys of the dictionary.
>>> colors = { "blue": (0x30,0x30,0xff), "green": (0x30,0xff,0x97),
. "red": (0xff,0x30,0x97), "yellow": (Oxff,O0xff,0x30) }
>>> for c in colors:
print c, colors[c]

It’s common to use some slightly different techniques for iterating through the elements of a dict.

e The key:value pairs. We can use the items () method to iterate through the sequence of 2-tuples that
contain each key and the associated value.

for key, value in someDictionary.items():
process key and value

e The values. We can use the values () method to iterate through the sequence of values in the dictionary.

for value in someDictionary.values():
process the value

Note that we can’t easily determine the associated key. A dictionary only goes one way: from key to
value.

e The keys. We can use the keys() method to iterate through the sequence of keys. This is what
happens when we simply use the dictionary object in the for statement.

Here’s an example of using the key:value pairs.

>>> myBoat = { "NAME":"KaDiMa", "LOA":18,
"SAILS":["main","jib","spinnaker"] }
>>> for key, value in myBoat.items():
print key, "=", value

178 Chapter 16. Mappings and Dictionaries

Building Skills in Python, Release 2.6.5

LOA = 18
NAME = KaDiMa
SAILS = ['main', 'jib', 'spinnaker']

The del Statement. The del statement removes items from a dict . For example

>>> i = { "two":2, "three":3, "quatro":4 }
>>> del i["quatro"]

>>> i

{'two': 2, 'three': 3}

In this example, we use the key to remove the item from the dict.
The member function, pop(), does this also.

>>> i = { "two":2, "three":3, "quatro":4 }

>>> i.pop("quatro")

4

>>> i
{'two': 2, 'three': 3}

16.6 Dictionary Built-in Functions

Here are the built-in functions that deal with dictionaries.

dict (fvalues]/, [key=value...])

Creates a new dictionary. If a positional parameter, values is provided, each element must be a 2-
tuple. The values pairs are used to populate the dictionary; the first element of each pair is the key

and the second element is the value.

Note that the zip() function produces a 1ist of 2-tuples from two parallel 1ists.

If any keyword parameters are provided, each keyword becomes a key in the dictionary and the keyword

argument becomes the value for that key.

>>> dict([('first',0), ('second',1),('third',2)])
{'second': 1, 'third': 2, 'first': 0}

>>> dict(zip(['fourth','fifth', 'sixth'l,[3,4,5]))
{'sixth': 5, 'fifth': 4, 'fourth': 3}

>>> dict(seventh=7, eighth=8, ninth=9)
{'seventh': 7, 'eighth': 8, 'ninth': 9}

Functions which apply to dicts, but are defined elsewhere.
e len(). For dicts, this function returns the number of items.
>>> len({1:'first',2:'second',3:'third'})
3

>>> len({})
0

e max (). For dicts, this function returns the maximum key.

>>> max({1:'first',2:'second',3:'third'})
3

16.6. Dictionary Built-in Functions

179

Building Skills in Python, Release 2.6.5

e min(). For dicts, this function returns the minimum key.

e sum(). For dicts, this function sums the keys.

>>> sum({1:'first',2:'second',3:'third'})
6

e any(). Equivalent to ‘any(dictionary.keys())’ Return True if any key in the dictionary are
True, or equivalent to True. This is almost always true except for empty dictionaries or a peculiar
dictionary with keys of 0, False, None, etc.

e all(). Equivalent to ‘all(dictionary.keys())’ Return True if all keys in the dictionary are True,
or equivalent to True.

>>> all({1:'first',2:'second',3:'third'})
True

>>> all({1:'first',2:'second’',None:'error'})
False

e enumerate(). Iterate through the dictionary returning 2-tuples of ‘(index, key)’ This iterates
through the key values. Since dictionaries have no explicit ordering to their keys, this enumeration is
in an arbitrary order.

e sorted(). Iterate through the dictionary keys in sorted order. The keys are actually a list, and this
returns a list of the sorted keys.

>>> sorted({ "two":2, "three":3, "quatro":4 })
['quatro', 'three', 'two']

16.7 Dictionary Methods

A dict object has a number of member methods. Many of these maintain the values in a dict . Others
retrieve parts of the dict as a sequence, for use in a for statement.

The following mutator functions update a dict object. Most of these do not return a value. The dict.pop()
and dict.setdefault () methods both update the dictionary and return values.

clear()
Remove all items from the dict.

pop (key, [default])
Remove the given key from the dict, returning the associated value. If the key does not exist, return
the default value provided. If the key does not exist and no default value exists, raise a KeyError
exception.

setdefault (key, [default])
If the key is in the dictionary, return the associated value. If the key is not in the dictionary, set the
given default as the value and return this value. If default is not given, it defaults to None.

update (new, [key=value...])
Merge values from the new new into the original dict, adding or replacing as needed.

It is equivalent to the following Python statement. ‘for k in new.keys(): d[k]= new[k]’

If any keyword parameters are provided, each keyword becomes a key in the dictionary and the keyword
argument becomes the value for that key.

180 Chapter 16. Mappings and Dictionaries

Building Skills in Python, Release 2.6.5

>>> x= dict(seventh=7, eighth=8, ninth=9)

>>> x

{'seventh': 7, 'eighth': 8, 'ninth': 9}

>>> x.update(first=1)

>>> x

{'seventh': 7, 'eighth': 8, 'ninth': 9, 'first': 1}

The following transformer function transforms a dictionary into another object.

copy ()
Copy the dict to make a new dict. This is a shallow copy. All objects in the new dict are references
to the same objects as the original dict.

The following accessor methods provide information about a dict.

get (key, [default])
Get the item with the given key, similar to ‘dict [key]’. If the key is not present and default is given,
supply default instead. If the key is not present and no default is given, raise the KeyError exception.

items ()
Return all of the items in the dict as a sequence of (key,value) 2-tuples. Note that these are returned
in no particular order.

keys ()
Return all of the keys in the dict as a sequence of keys. Note that these are returned in no particular
order.

values()
Return all the values from the dict as a sequence. Note that these are returned in no particular order.

16.8 Using Dictionaries as Function Parameter Defaults

It’s very, very important to note that default values must be immutable objects. Recall that numbers,
strings, None, and tuple objects are immutable.

We note that dictionaries as well as sets and lists are mutable, and cannot be used as default values for
function parameters.

Consider the following example of what not to do.

>>> def default2(someDict={}):
someDict['default']= 2
return someDict

>>> looks_good= {}

>>> default2(looks_good)
{'default': 2}

>>> default2(looks_good)
{'default': 2}

>>> looks_good
{'default': 2}

>>>

>>>

>>> not_good= default2()
>>> not_good

{'default': 2}

>>> worse= default2()

16.8. Using Dictionaries as Function Parameter Defaults 181

Building Skills in Python, Release 2.6.5

>>> worse
{'default': 2}
>>> not_good
{'default': 2}

>>>

>>> not_good['surprise']= 'what?'
>>> not_good

{'default': 2, 'surprise': 'what?7'}
>>> worse

{'default': 2, 'surprise': 'what?'}

. We defined a function which has a default value that’s a mutable object. This is simple a bad pro-

gramming practice in Python.

We used this function with a dictionary object, looks_good. The function updated the dictionary
object as expected.

We used the function’s default value to create not_good. The function inserted a value into an empty
dictionary and returned this new dictionary object.

It turns out that the function updated the mutable default value, also.

When we use the function’s default value again, with worse, the function uses the updated default
value and updates it again.

Both not_good and worse are references to the same mutable object that is being updated.

To avoid this, do not use mutable values as defaults. Do this instead.

def default2(someDict=None):

if someDict is None:

someDict= {}

someDict['default']= 2
return someDict

This creates a fresh new mutable object as needed.

16.9 Dictionary Exercises

1. Word Frequencies. Update the exercise in Accumulating Unique Values to count each occurance of

the values in aSequence. Change the result from a simple sequence to a dict. The dict key is the
value from aSequence. The dict value is the count of the number of occurances.

If this is done correctly, the input sequence can be words, numbers or any other immutable Python
object, suitable for a dict key.

For example, the program could accept a line of input, discarding punctuation and breaking them into
words in space boundaries. The basic string operations should make it possible to create a simple
sequence of words.

Iterate through this sequence, placing the words into a dict. The first time a word is seen, the
frequency is 1. Each time the word is seen again, increment the frequency. Produce a frequency table.

To alphabetize the frequency table, extract just the keys. A sequence can be sorted (see section 6.2).
This sorted sequence of keys can be used to extract the counts from the dict.

. Stock Reports. A block of publicly traded stock has a variety of attributes, we’ll look at a few of

them. A stock has a ticker symbol and a company name. Create a simple dict with ticker symbols
and company names.

182

Chapter 16. Mappings and Dictionaries

Building Skills in Python, Release 2.6.5

For example:

stockDict = { 'GM': 'General Motors',
'CAT':'Caterpillar', 'EK':"Eastman Kodak" }

Create a simple 1ist of blocks of stock. These could be tuple s with ticker symbols, prices, dates and
number of shares. For example:

purchases = [('GE', 100, '10-sep-2001', 48),
('CAT', 100, '1-apr-1999', 24),
('GE', 200, '1-jul-1999', 56) 1

Create a purchase history report that computes the full purchase price (shares times dollars) for each
block of stock and uses the stockDict to look up the full company name. This is the basic relational
database join algorithm between two tables.

Create a second purchase summary that which accumulates total investment by ticker symbol. In the
above sample data, there are two blocks of GE. These can easily be combined by creating a dict where
the key is the ticker and the value is the list of blocks purchased. The program makes one pass
through the data to create the dict. A pass through the dict can then create a report showing each
ticker symbol and all blocks of stock.

3. Date Decoder. A date of the form ‘8-MAR-85’ includes the name of the month, which must be
translated to a number. Create a dict suitable for decoding month names to numbers. Create a
function which uses string operations to split the date into 3 items using the “-” character. Translate
the month, correct the year to include all of the digits.

The function will accept a date in the “dd-MMM-yy” format and respond with a tuple of (y, m, d).

4. Dice Odds. There are 36 possible combinations of two dice. A simple pair of loops over range(6)+1 will
enumerate all combinations. The sum of the two dice is more interesting than the actual combination.
Create a dict of all combinations, using the sum of the two dice as the key.

Each value in the dict should be a 1ist of tuple s; each tuple has the value of two dice. The general
outline is something like the following:

Enumerate Dice Combinations

Initialize. combos «— dict()
For all d1. Iterate with 1 <d; < 7.
For all d2. Iterate with 1 <d < 7.
Create a Tuple. t «— (dy,ds).
In the Dictionary. Is di + ds a key in combos?
Append. Append the tuple, ¢ to the value for item d; 4+ do in combos.
Not In the Dictionary. If d; + dy is not a key in combos, then

Insert. Add a new element d; + ds to the combos; the value is a 1-element
list of the tuple, t.

Report. Display the resulting dictionary.

16.9. Dictionary Exercises 183

Building Skills in Python, Release 2.6.5

16.10 Advanced Parameter Handling For Functions

In More Function Definition Fealures we hinted that Python functions can handle a variable number of
argument values in addition to supporting optional argument values.

When we define a function, we can have optional parameters. We define a fixed number of parameters, but
some (or all) can be omitted because we provided default values for them. This allows us to provide too few
positional argument values.

If we provide too many positional argument values to a function, however, Python raises an exception. It
turns out that we can also handle this.

Consider the following example. We defined a function of three positional parameters, and then evaluated
it with more than three argument values.

>>> def avg(a,b,c): return (atb+c)/3.0

>>> avg(10,11,12)
11.0
>>> avg(10,11,12,13)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: avg() takes exactly 3 arguments (4 given)

First, we’ll look at handling an unlimited number of positional values. Then we’ll look at handling an
unlimited number of keyword values.

16.10.1 Unlimited Number of Positional Argument Values

Python lets us define a function that handles an unknown and unlimited number of argument values. Ex-
amples of built-in functions with a unlimited number of argument values are max () and min().

Rather than have Python raise an exception for extra argument values, we can request the additional
positional argument values be collected into a tuple. To do this, we provide a final parameter definition of
the form * extras. The * indicates that this parameter variable is the place to capture the extra argument
values. The variable, here called extras, will receive a sequence with all of the extra positional argument
values.

You can only provide one such variable (if you provided two, how could Python decide which of these two
got the extra argument values?) You must provide this variable after the ordinary positional parameters in
the function definition.

The following function accepts an unlimited number of positional arguments; it collects these in a single
tuple parameter, args.

def myMax(*args):
max= args[0]
for a in args[1:]:
if a > max: max= a
return max

Here’s another example. In this case we have a fixed parameter in the first position and all the extra
parameters collected into a tuple called vals.

def printf(format, *vals):
print format 7 vals

184 Chapter 16. Mappings and Dictionaries

Building Skills in Python, Release 2.6.5

This should look familiar to C programmers. Now we can write the following, which may help ease the
transition from C to Python.

printf("/s = /d", "some string", 2)
printf("/s, /s, Jd /d", "thingl", "thing2", 3, 22)

16.10.2 Unlimited Number of Keyword Argument Values

In addition to collecting extra positional argument values into a single parameter, Python can also collect
extra keyword argument values into a dict.

If you want a container of keyword arguments, you provide a parameter of the form ** extras. Your variable,
here called extras, will receive a dict with all of the keyword parameters.

The following function accepts any number of keyword arguments; they are collected into a single parameter.

def rtd(x*args):

if "rate" in args and "time" in args:
args['distance'] = args['rate']*args['time']

elif "rate" in args and "distance" in args:
args['time']= args['distance']/args['rate']

elif "time" in args and "distance" in args:
args['rate']= args['distance']/args['time']

else:
raise Exception("/r does not compute" % (args,))

return args

Here’s two examples of using this rtd () function.

>>> rtd(rate=60.0, time= .75)

{'distance': 45.0, 'rate': 60.0, 'time': 0.75}

>>> rtd(distance=173, time=2+50/60.0)

{'distance': 173, 'rate': 61.058823529411761, 'time': 2.8333333333333335}

The keyword arguments are collected into a dict, named args. We check for combinations of “rate”, “time”
and “distance” in the args dictionary. For each combination, we can solve for the remaining value and
update the dict by insert the additional key and value into the dict.

16.10.3 Evaluation with a Container Instead of Individual Argument Values

When evaluating a function, we can provide a sequence instead of providing individual positional parameters.

We do this with a special version of the * operator when evaluating a function. Here’s an example of forcing
a 3- tuple to be assigned to three positional parameters.

>>> def avg3(a, b, ¢):
return (a+b+c)/3.0

>>> data= (4, 3, 2)
>>> avg3(*data)
3.0

In this example, we told Python to assign each element of our 3-tuple named data, to a separate parameter
variables of the function avg3().

16.10. Advanced Parameter Handling For Functions 185

Building Skills in Python, Release 2.6.5

As with the * operator, we can use ** to make a dict become a series of keyword parameters to a function.

>>> d={ 'a':5, 'b':6, 'c':9 }
>>> avg3(**d)
6.666666666666667

In this example, we told Python to assign each element of the dict, d , to specific keyword parameters of
our function.

We can mix and match this with ordinary parameter assignment, also. Here’s an example.

>>> avg3(2, b=3, **x{'c':4})
3.0

Here we’ve called our function with three argument values. The parameter a will get its value from a simple
positional parameter. The parameter b will get its value from a keyword argument. The parameter ¢ will
get its value from having the dict {'c':4} turned into keyword parameter assignment.

We’ll make more use of this in Inheritance .

186 Chapter 16. Mappings and Dictionaries

CHAPTER

SEVENTEEN

SETS

Many algorithms need to work with simple containers of data values, irrespective of order or any key. This
is a simple set of objects, which is supported by the Python set container. We’ll look at Sets from a number
of viewpoints: semantics, literal values, operations, comparison operators, statements, built-in functions and
methods.

17.1 Set Semantics

A set is, perhaps the simplest possible container, since it contains objects in no particular order with no
particular identification. Objects stand for themselves. With a sequence, objects are identified by position.
With a mapping, objects are identified by some key. With a set, objects stand for themselves.

Since each object stands for itself; elements of a set cannot be duplicated. A 1ist or tuple, for example,
can have any number of duplicate objects. For example, the tuple (1, 1, 2, 3) has four elements,
which includes two copies of the integer 1; if we create a set from this tuple, the set will only have three
elements.

A set has large number of operations for unions, intersections, and differences. A common need is to examine
a set to see if a particular object is a member of that set, or if one set is contained within another set.

A set is mutable, which means that it cannot be used as a key for a dict (see Mappings and Dictionaries for
more information.) In order to use a set as a dict key, we can create a frozenset, which is an immutable
copy of a set. This allows us to accumulate a set of values to create a dict key.

17.2 Set Literal Values

There are no literal values for set objects. A set value is created by using the set () or frozenset () factory
functions. These can be applied to any iterable container, which includes any sequence, the keys of a dict,
or even a file.

We'll return to the general notion of “iterable” when we look at the yield statement in Ilterators and
G(fTL(iT’(Lt()’f'S.

set (iterable)

Transforms the given iterable (sequence, file, frozenset or set) into a set.

>>> set(("hello", "world", "of", "words", "of", "world"))
set(['world', 'hello', 'words', 'of'l)

187

Building Skills in Python, Release 2.6.5

Note that we provided a six-tuple sequence to the set() function, and we got a set with the four
unique objects. The set is shown as a 1ist literal, to remind us that a set is mutable.

You cannot provide a list of argument values to the set() function. You must provide an iterable
object (usually a tuple).

Trying ‘set("one", "two", "three")’ will result in an TypeError because you provided three
arguments. You must provide a single argument which is iterable. All sequences are iterable, so a
sequence literal is the easiest to provide.

set (iterable)
Transforms the given iterable (sequence, file or set) into an immutable frozenset.

17.3 Set Operations

There are a large number of set operations, including union (‘|’), intersection (‘&’), difference (‘-’), and
symmetric difference (‘~’). These are unusual operations, so we’ll look at them in some detail. In addition to
the operator notation, there are also method functions which do the same things. We’'ll look at the method

function versions below.
We'll use the following two set objects to show these operators.

>>> fib=set((1,1,2,3,5,8,13))
>>> prime=set((2,3,5,7,11,13))

L|7

Union. The resulting set has elements from both source sets. An element is in the result if it is one
set or the other.

>>> fib | prime
set([1, 2, 3, 5, 7, 8, 11, 13])

188 Chapter 17. Sets

Building Skills in Python, Release 2.6.5

S1US2={eleec S1oreec S2}

Intersection. ‘&. The resulting set has elements that are common to both source sets. An element is in
the result if it is in one set and the other.

>>> fib & prime
set([2, 3, 5, 13])

S1NS2={ele e S1 and e € 52}

Difference. ‘-’ The resulting set has elements of the left-hand set with all elements from the right-hand
set removed. An element will be in the result if it is in the left-hand set and not in the right-hand set.

>>> fib - prime
set([8, 11)
>>> prime - fib
set([11, 71)

S1—52={e|le € S1 and e ¢ S2}
52— S1={ele ¢ S1 and e € 52}

Symmetric Difference. ‘~’. The resulting set has elements which are unique to each set. An element will
be in the result set if either it is in the left-hand set and not in the right-hand set or it is in the right-hand
set and not in the left-hand set. Whew!

17.3. Set Operations 189

Building Skills in Python, Release 2.6.5

>>> fib ~ prime
set([1, 7, 8, 111)

S16 52 = {ele € S1 xor e € 52}

17.4 Set Comparison Operators

) ¢)

Therer are a number of set comparisons. All of the standard comparisons (‘<’, ‘<=", >’ >=" ‘==" ‘1=’
in, not in) work with sets, but the interpretation of the operators is based on set theory. The various
operations from set theory are the subset and proper subset relationships.

The various comparison mathematical operations of C, C, D, D are implemented by ‘<’) ‘<=7 >7 >=’,

In the following example, the set craps is all of the ways we can roll craps on a come out roll. Also, we’ve
defined three to hold both of the dice rolls that total 3. When we compare three with craps, we see the
expected relationships: three is a subset craps as well as a proper subset of craps.

>>> craps= set([(1,1), (2,1), (1,2), (6,6) 1)
>>> three = set([(1,2), (2,1) 1)

>>> three < craps

True

>>> three <= craps

True

The in and not in operators implement that € and ¢ relationships.

In the following example, the set craps is all of the ways we can roll craps on a come out roll. We’ve
modeled a throw of the dice as a 2-tuple. We can now test a specific throw to see if it is craps.

190 Chapter 17. Sets

Building Skills in Python, Release 2.6.5

>>> craps= set([(1,1), (2,1), (1,2), (6,6) 1)
>>> (1,2) in craps

True

>>> (3,4) in craps

False

17.5 Set Statements

The for statement works directly with set objects, because they are iterable. A set is not a sequence, but
it is like a sequence because we can iterate through the elements using a for statement.

Here we create three set objects: even, odd, and zero to reflect some standard outcomes in Roulette. The

union of all three sets is the complete set of possible spins. We can iterate through this resulting set.

>>> even= set(range(2,38,2))

>>> odd= set(range(1,37,2))

>>> zero= set((0,'00"))

>>> for n in even|odd|zero:
print n

17.6 Set Built-in Functions

A number of built-in functions create or process set objects.
The set () and frozenset () were described above, under Set Literal Values.

Functions which apply to sets, but are defined elsewhere.

17.5. Set Statements 191

Building Skills in Python, Release 2.6.5

e len(). For sets, this function returns the number of items.

>>> len(set([1,1,2,3]))
3

>>> len(set())

0

Note that sets do not include duplicates, that’s why the length in the first example is not 4.
o max (). For sets, this function returns the maximum item.

>>> max(set([1,1,2,3,5,8]))
8

e min(). For sets, this function returns the minimum item.
o sum(). For sets, this function sums the items.

>>> sum(set([1,1,2,3,5,8]))
19

Note that sets do not include duplicates, that’s why the sum is not 20.
e any(). For sets, Return True if there exists any item which is True.

>>> set([0, None, False])

set ([0, Nonel)

>>> any(_)

False

>>> any(set([0,None,False,42]))
True

Note that False and 0 have the same value when constructing a set, and are duplicates.
e all(). For sets, Return True if all items are True.

>>> all(set([0,None,False,42]))

False

>>> all(set([1,True]))
True

e enumerate(). Iterate through the set returning 2-tuples of ‘(index, item)’ Since sets have no
explicit ordering to their items, this enumeration is in an arbitrary order.

e sorted(). Iterate through the set elements in sorted order. This returns a set of elements.

>>> sorted(set([1,1,2,3,5,8]))
(1, 2, 3, 5, 8]

17.7 Set Methods

A set object has a number of member methods.

The following mutators update a set object. Note that most of these methods don’t return a value. The
exception is pop.

192 Chapter 17. Sets

Building Skills in Python, Release 2.6.5

clear()
Remove all items from the set.

pop)
Remove an arbitrary object from the set, returning the object. If the set was already empty, this will
raise a KeyError exception.

add (new)
Adds element new to the set. If the object is already in the set, nothing happens.

remove (old)
Removes element old from the set . If the object old is not in the set , this will raise a KeyError
exception.

discard()
Same a set.remove().

update (new)
Merge values from the new set into the original set, adding elements as needed.

It is equivalent to the following Python statement. ‘s |= new’.

intersection_update (new)
Update set to have the intersection of set and new. In effect, this discards elements from set, keeping
only elements which are common to new and set

It is equivalent to the following Python statement. ‘s &= new’.

difference_update (new)
Update set to have the difference between set and new. In effect, this discards elements from set which
are also in new.

It is equivalent to the following Python statement. ‘s -= new’.

symmetric_difference_update (new)
Update set to have the symmetric difference between set and new. In effect, this both discards elements
from s which are common with new and also inserts elements into s which are unique to new.

It is equivalent to the following Python statement. ‘s ~= new’.
The following transformers built a new object from one or more sets.

copy O
Copy the set to make a new set. This is a shallow copy. All objects in the new set are references to

the same objects as the original set.

union(new)
If new is a proper set, return ‘set | new’ If new is a sequence or other iterable, make a new set from
the value of new, then return the union, ‘set | new’ This does not update the original set.

>>> prime.union((1, 2, 3, 4, 5))
set([1, 2, 3, 4, 5, 7, 11, 13])

intersection(new)
If new is a proper set, return ‘set & new’ If new is a sequence or other iterable, make a new set from
the value of new, then return the intersection, ‘set & new’. This does not update set.

difference (new)
If new is a proper set, return ‘set - new’. If new is a sequence or other iterable, make a new set from
the value of new, then return the difference, ‘set - new’. This does not update set.

17.7. Set Methods 193

Building Skills in Python, Release 2.6.5

symmetric_difference(new)
If new is a proper set, return ‘s ~ new’. If new is a sequence or other iterable, make a new set from
the value of new, then return the symmetric difference, ‘sset = new’ This does not update s .

The following accessor methods provide information about a set.

issubset (other)
If set is a subset of other, return True, otherwise return False. Essentially, this is ‘set <= other’ .

issuperset (other)
If set is a superset of other, return True , otherwise return False. Essentially, this is ‘set >= other’.

17.8 Using Sets as Function Parameter Defaults

It’s very, very important to note that default values must be immutable objects. Recall that numbers,
strings, None, and tuple objects are immutable.

We note that sets as well as dictionaries and lists are mutable, and cannot be used as default values for
function parameters.

Consider the following example of what not to do.

>>> def default2(someSet=set()):
someSet.add(2)
return someSet

>>> looks_good= set()
>>> default2(looks_good)
set ([2])

>>> looks_good

set ([2])

>>>

>>>

>>> not_good= default2()
>>> not_good

set ([2])

>>> worse= default2()
>>> worse

set ([2])

>>>

>>> not_good.add(3)

>>> not_good

set([2, 31)

>>> worse

set([2, 3])

1. We defined a function which has a default value that’s a mutable object. This is simple a bad pro-
gramming practice in Python.
2. We used this function with a set object, looks_good. The function updated the set object as expected.

3. We used the function’s default value to create not_good. The function inserted a value into an empty
set and returned this new set object.

It turns out that the function updated the mutable default value, also.

4. When we use the function’s default value again, with worse, the function uses the updated default
value and updates it again.

194 Chapter 17. Sets

Building Skills in Python, Release 2.6.5

Both not_good and worse are references to the same mutable object that is being updated.

To avoid this, do not use mutable values as defaults. Do this instead.

def default2(someSet=None):
if someSet is None:
someSet= {}
someSet.add(2)
return someSet

This creates a fresh new mutable object as needed.

17.9 Set Exercises

1. Dice Rolls. In Craps, each roll of the dice belongs to one of several set s of rolls that are used
to resolve bets. There are only 36 possible dice rolls, but it’s annoying to define the various set s
manually. Here’s a multi-step procedure that produces the various set s of dice rolls around which
you can define the game of craps.

First, create a sequence with 13 empty set s, call it dice. Something like ‘[set() 1*13’ doesn’t
work because it makes 13 copies of a single set object. You'll need to use a for statement to evaluate
the set constructor function 13 different times. What is the first index of this sequence? What is the
last entry in this sequence?

Second, write two, nested, for-loops to iterate through all 36 combinations of dice, creating 2- tuple s.
The 36 2-tuple s will begin with (1,1) and end with (6,6). The sum of the two elements is an index
into dice. We want to add each 2- tuple to the appropriate set in the dice sequence.

When you’re done, you should see results like the following:

>>> dice[7]
set([(5, 2), (6, 1), (1, 6), (4, 3), (2, B), (3, &)1)

Now you can define the various rules as sets built from other sets.

lose On the first roll, you lose if you roll 2, 3 or 12. This is the set ‘dice[2] | dice[3] |
dice[12]’. The game is over.

win On the first roll, you win if you roll 7 or 11. The game is over. This is ‘dice[7] |
dice[11]"

point On the first roll, any other result (4, 5, 6, 8, 9, or 10) establishes a point. The game
runs until you roll the point or a seven.

craps Once a point is established, you win if you roll the point’s number. You lose if you
roll a 7.

Once you have these three sets defined, you can simulate the first roll of a craps game with a relatively
elegant-looking program. You can generate two random numbers to create a 2-tuple. You can then
check to see if the 2-tuple is in the lose or win sets.

If the come-out roll is in the point set, then the sum of the 2-tuple will let you pick a set from the
dice sequence. For example, if the come-out roll is (2,2), the sum is 4, and you’d assign ‘dice[4]’ to
the variable point; this is the set of winners for the rest of the game. The set of losers for the rest
of the game is always the craps set.

17.9. Set Exercises 195

Building Skills in Python, Release 2.6.5

The rest of the game is a simple loop, like the come-out roll loop, which uses two random numbers to
create a 2- tuple. If the number is in the point set, the game is a winner. If the number is in the
craps set, the game is a loser, otherwise it continues.

2. Roulette Results. In Roulette, each spin of the wheel has a number of attributes like even-ness,
low-ness, red-ness, etc. You can bet on any of these attributes. If the attribte on which you placed bet
is in the set of attributes for the number, you win.

We'll look at a few simple attributes: red-black, even-odd, and high-low. The even-odd and high-low
attributes are easy to compute. The red-black attribute is based on a fixed set of values.
redNumbers= set([1,3,5,7,9,12,14,16,18,19,21,23,25,27,30,32,34,36])
We have to distinguish between 0 and 00, which makes some of this decision-making rather complex.
We can, for example, use ordinary integers for the numbers 0 to 36, and append the string “00” to
this set of numbers. For example, ‘set(range(37)) | set(['00'])’ This set is the entire
Roulette wheel, we can call it wheel.
We can define a number of set s that stand for bets: red, black, even, odd, high and low. We can
iterate though the values of wheel, and decide which set s that value belongs to.

o If the spin is non-zero and ‘spin % 2 == 0’; add the spin to the even set.

o If the spin is non-zero and ‘spin % 2 != 0’, add the spin to the odd set.

o If the spin is non-zero and it’s in the redNumbers set, add the spin to the red set.

o If the spin is non-zero and it’s not in the redNumbers set, add the value to the black set.

o If the spin is non-zero and ‘spin <= 18’, add the value to the low set.

o If the spin is non-zero and ‘spin > 18’, add the value to the high set.
Once you have these six sets defined, you can use them to simulate Roulette. Each round involves
picking a random spin with something like ‘random.choice(list(wheel))’ You can then see which
set the spin belongs to. If the spin belongs to a set on which you’ve bet, the spin is a winner, otherwise
it’s a loser.
These six sets all pay 2:1. There are a some set s which pay 3:1, including the 1-12, 13-24, 25 to 36
ranges, as well as the three columns, spin % 3 == 0, spin % 3 == 1 and spin % 3 == 2. There are
still more bets on the Roulette table, but the set s of spins for those bets are rather complex to define.

3. Sieve of Eratosthenes. Look at Sieve of Eratosthenes. We created a list of candidate prime
numbers, using a sequence with 5000 boolean flags. We can, without too much work, simplify this to
use a set instead of a list.

Sieve of Eratosthenes - Set Version

(a) Initialize

Create a set, prime which has integers between 2 and 5000.
Set p «— 2

(b) Iterate. While 2 < p < 5000:
Find Next Prime. while not prime, and 2 < p < 5000:

Increment p by 1.
Remove Multiples. At this point, p is prime.
196 Chapter 17. Sets

Building Skills in Python, Release 2.6.5

Set k —p+p
while & < 5000:
Remove k from the set prime
Set k— k+p
Next p. Increment p by 1.
(c) Report.
At this point, the set prime has the prime numbers. We can return the set.

In the Find Next Prime step, you're really looking for the minimum in the prime set which is greater
than or equal to p.

In the Remove Multiples step, you can create the set of multiples, and use difference_update ()
to remove the multiples from prime.

You can, also, use the range () function to create multiples of p, and create a set from this sequence
of multiples.

17.9. Set Exercises 197

Building Skills in Python, Release 2.6.5

198 Chapter 17. Sets

CHAPTER

EIGHTEEN

EXCEPTIONS

The try, except, finally and raise statements

A well-written program should produce valuable results even when exceptional conditions occur. A program
depends on numerous resources: memory, files, other packages, input-output devices, to name a few. Some-
times it is best to treat a problem with any of these resources as an exception, which interrupts the normal
sequential flow of the program.

In Ezception Semantics we introduce the semantics of exceptions. We'll show the basic exception-handling
features of Python in Basic Ezception Handling and the way exceptions are raised by a program in Raising
FExceptions.

We'll look at a detailed example in An Exceptional Exzample. In Complete Exception Handling and The
finally Clause, we cover some additional syntax that’s sometimes necessary. In Ezception Functions, we’ll
look at a few standard library functions that apply to exceptions.

We descibe most of the built-in exceptions in Built-in Ezceptions. In addition to exercises in Ezception
Exzercises, we also include style notes in Style Notes and a digression on problems that can be caused by
poor use of exceptions in A Digression.

18.1 Exception Semantics

An exception is an event that interrupts the ordinary sequential processing of a program. When an exception
is raised, Python will handle it immediately. Python does this by examining except clauses associated with
try statements to locate a suite of statements that can process the exception. If there is no except clause
to handle the exception, the program stops running, and a message is displayed on the standard error file.

An exception has two sides: the dynamic change to the sequence of execution and an object that contains
information about the exceptional situation. The dynamic change is initiated by the raise statement, and
can finish with the handlers that process the raised exception. If no handler matches the exception, the
program’s execution effectively stops at the point of the raise.

In addition to the dynamic side of an exception, an object is created by the raise statement; this is used to
carry any information associated with the exception.

Consequences. The use of exceptions has two important consequences.

First, we need to clarify where exceptions can be raised. Since various places in a program will raise
exceptions, and these can be hidden deep within a function or class, their presence should be announced by
specifying the possible exceptions in the docstring.

Second, multiple parts of a program will have handlers to cope with various exceptions. These handlers should
handle just the meaningful exceptions. Some exceptions (like RuntimeError or MemoryError) generally can’t

199

Building Skills in Python, Release 2.6.5

be handled within a program; when these exceptions are raised, the program is so badly broken that there
is no real recovery.

Exceptions are a powerful tool for dealing with rare, atypical conditions. Generally, exceptions should be
considered as different from the expected or ordinary conditions that a program handles. For example, if
a program accepts input from a person, exception processing is not appropriate for validating their inputs.
There’s nothing rare or uncommon about a person making mistakes while attempting to enter numbers or
dates. On the other hand, an unexpected disconnection from a network service is a good candidate for an
exception; this is a rare and atypical situation. Examples of good exceptions are those which are raised in
response to problems with physical resources like files and networks.

Python has a large number of built-in exceptions, and a programmer can create new exceptions. Generally, it
is better to create new exceptions rather than attempt to stretch or bend the meaning of existing exceptions.

18.2 Basic Exception Handling

Exception handling is done with the try statement. The try statement encapsulates several pieces of
information. Primarily, it contains a suite of statements and a group of exception-handling clauses. Each
exception-handling clause names a class of exceptions and provides a suite of statements to execute in
response to that exception.

The basic form of a try statement looks like this:

try:
suite

except exception { , target) :
suite

except:
suite

Each suite is an indented block of statements. Any statement is allowed in the suite. While this means that
you can have nested try statements, that is rarely necessary, since you can have an unlimited number of
except clauses on a single try statement.

If any of the statements in the try suite raise an exception, each of the except clauses are examined to
locate a clause that matches the exception raised. If no statement in the try suite raises an exception, the
except clauses are silently ignored.

The first form of the except clause provides a specific exception class which is used for matching any
exception which might be raised. If a target variable name is provided, this variable will have the exception
object assigned to it.

The second form of the except clause is the “catch-all” version. This will match all exceptions. If used, this
must be provided last, since it will always match the raised exception.

We'll look at the additional finally clause in a later sections.
Important: Python 3
The except statement can’t easily handle a list of exception classes. The Python 2 syntax for this is

confusing because it requires some additional ‘()’ around the list of exceptions.

except (exception, ...) (, target) :

200 Chapter 18. Exceptions

Building Skills in Python, Release 2.6.5

The Python 3 syntax wil be slightly simpler. Using the keyword as will remove the need for the additional
‘() around the list of exceptions.

except exception, ... as target

Overall Processing. The structure of the complete try statement summarizes the philosophy of exceptions.
First, try the suite of statements, expecting them work. In the unlikely event that an exception is raised, find
an exception clause and execute that exception clause suite to recover from or work around the exceptional
situation.

Except clauses include some combination of error reporting, recovery or work-around. For example, a
recovery-oriented except clause could delete useless files. A work-around exception clause could returning a
complex result for square root of a negative number.

First Example. Here’s the first of several related examples. This will handle two kinds of exceptions,
ZeroDivisionError and ValueError.

exceptionl.py

def avg(someList):
"""Raises TypeError or ZeroDivisionError exceptions."""
sum= 0
for v in somelList:
sum = sum + Vv
return float(sum)/len(someList)
def avgReport(somelList):
try:
m= avg(someList)
print "Average+15)=", m*1.15
except TypeError, ex:
print "TypeError:", ex
except ZeroDivisionError, ex:
print "ZeroDivisionError:", ex

This example shows the avgReport () function; it contains a try clause that evaluates the avg() function.
We expect that there will be a ZeroDivisionError exception if an empty list is provided to avg(). Also, a
TypeError exception will be raised if the list has any non-numeric value. Otherwise, it prints the average of
the values in the list.

In the try suite, we print the average. For certain kinds of inappropriate input, we will print the exceptions
which were raised.

This design is generally how exception processing is handled. We have a relatively simple, clear function
which attempts to do the job in a simple and clear way. We have a application-specific process which handles
exceptions in a way that’s appropriate to the overall application.

Nested :command:‘try‘ Statements. In more complex programs, you may have many function defini-
tions. If more than one function has a try statement, the nested function evaluations will effectively nest
the try statements inside each other.

This example shows a function solve (), which calls another function, quad (). Both of these functions have
a try statement. An exception raised by quad() could wind up in an exception handler in solve().

18.2. Basic Exception Handling 201

Building Skills in Python, Release 2.6.5

exception2.py

def sum(someList):
"""Raises TypeError"""
sum= 0
for v in somelList:
sum = sum + Vv
return sum
def avg(somelList):
"""Raises TypeError or ZeroDivistionError exceptions.
try:
s= sum(someList)
return float(s)/len(someList)
except TypeError, ex:
return "Non-Numeric Data"
def avgReport(somelList):
try:
m= avg(someList)
print "Average+15)=", m*1.15
except TypeError, ex:
print "TypeError: ", ex
except ZeroDivisionError, ex:

mwmn

print "ZeroDivisionError: ", ex

In this example, we have the same avgReport () function, which uses avg() to compute an average of a list.
We'’ve rewritten the avg() function to depend on a sum() function. Both avgReport () and avg() contain
try statements. This creates a nested context for evaluation of exceptions.

Specifically, when the function sum is being evaluated, an exception will be examined by avg() first, then
examined by avgReport (). For example, if sum() raises a TypeError exception, it will be handled by avg();
the avgReport () function will not see the TypeError exception.

Function Design. Note that this example has a subtle bug that illustrates an important point regarding
function design. We introduced the bug when we defined avg() to return either an answer or an error status
code in the form of a string. Generally, things are more complex when we try to mix return of valid results
and return of error codes.

Status codes are the only way to report errors in languages that lack exceptions. C, for example, makes
heavy use of status codes. The POSIX standard API definitions for operating system services are oriented
toward C. A program making OS requests must examing the results to see if it is a proper values or an
indication that an error occurred. Python, however, doesn’t have this limitation. Consequently many of the
OS functions available in Python modules will raise exceptions rather than mix proper return values with
status code values.

In our case, our design for avg() attepts to return either a valid numeric result or a string result. To be
correct we would have to do two kinds of error checking in avgReport(). We would have to handle any
exceptions and we would also have to examine the results of avg() to see if they are an error value or a
proper answer.

Rather than return status codes, a better design is to simply use exceptions for all kinds of errors. IStatus
codes have no real purposes in well-designed programs. In the next section, we’ll look at how to define and
raise our own exceptions.

202 Chapter 18. Exceptions

Building Skills in Python, Release 2.6.5

18.3 Raising Exceptions

The raise statement does two things: it creates an exception object, and immediately leaves the expected
program execution sequence to search the enclosing try statements for a matching except clause. The effect
of a raise statement is to either divert execution in a matching except suite, or to stop the program because
no matching except suite was found to handle the exception.

The Exception object created by raise can contain a message string that provides a meaningful error
message. In addition to the string, it is relatively simple to attach additional attributes to the exception.

Here are the two forms for the raise satement.

raise exceptionClass , value

raise exception

The first form of the raise statement uses an exception class name. The optional parameter is the additional
value that will be contained in the exception. Generally, this is a string with a message, however any object
can be provided.

Here’s an example of the raise statement.
raise ValueError, "oh dear me"

This statement raises the built-in exception ValueError with an amplifying string of "oh dear me".
The amplifying string in this example, one might argue, is of no use to anybody. This is an important
consideration in exception design. When using a built-in exception, be sure that the arguments provided
pinpoint the error condition.

The second form of the raise statement uses an object constructor to create the Exception object.

raise ValueError("oh dear me")

Here’s a variation on the second form in which additional attributes are provided for the exception.

ex= MyNewError("oh dear me")
ex.myCode= 42

ex.myType= "O+"

raise ex

In this case a handler can make use of the message, as well as the two additional attributes, myCode and
myType.

Defining Your Own Exception. You will rarely have a need to raise a built-in exception. Most often,
you will need to define an exception which is unique to your application.

We'll cover this in more detail as part of the object oriented programming features of Python, in Classes .
Here’s the short version of how to create your own unique exception class.

class MyError(Exception): pass

This single statement defines a subclass of Exception named MyError. You can then raise MyError in a
raise statement and check for MyError in except clauses.

Here’s an example of defining a unique exception and raising this exception with an amplifying string.

18.3. Raising Exceptions 203

Building Skills in Python, Release 2.6.5

quadratic.py

import math
class QuadError(Exception): pass
def quad(a,b,c):
if a ==
ex= QuadError("Not Quadratic")
ex.coef= (a, b, c)
raise ex
if bxb-4*axc < O:
ex= QuadError("No Real Roots")
ex.coef= (a, b, c)
raise ex
x1= (-b+math.sqrt(bxb-4x*a*c))/(2*a)
x2= (-b-math.sqrt(b*b-4*axc))/(2*a)
return (x1,x2)

Additional raise Statements. Exceptions can be raised anywhere, including in an except clause of a try
statement. We’ll look at two examples of re-raising an exception.

We can use the simple raise statement in an except clause. This re-raises the original exception. We can
use this to do standardized error handling. For example, we might write an error message to a log file, or
we might have a standardized exception clean-up process.

try:
attempt something risky
except Exception, ex:
log_the_error(ex)
raise

This shows how we might write the exception to a standard log in the function log_the_error () and then
re-raise the original exception again. This allows the overall application to choose whether to stop running
gracefully or handle the exception.

The other common technique is to transform Python errors into our application’s unique errors. Here’s an
example that logs an error and transforms the built-in FloatingPointError into our application-specific
error, MyError.

class MyError(Exception): pass

try:
attempt something risky
except FloatingPointError, e:
do something locally, perhaps to clean up
raise MyError("something risky failed: %s" % (e,))

This allows us to have more consistent error messages, or to hide implementation details.

18.4 An Exceptional Example

The following example uses a uniquely named exception to indicate that the user wishes to quit rather than
supply input. We’'ll define our own exception, and define function which rewrites a built-in exception to be
our own exception.

204 Chapter 18. Exceptions

Building Skills in Python, Release 2.6.5

We'll define a function, ckyorn(), which does a “Check for Y or N”. This function has two parameters,
prompt and help, that are used to prompt the user and print help if the user requests it. In this case, the
return value is always a “Y” or “N”. A request for help (“?”) is handled automatically. A request to quit is
treated as an exception, and leaves the normal execution flow. This function will accept “Q” or end-of-file
(usually ctrl-D, but also ctrl-Z on Windows) as the quit signal.

interaction.py

class UserQuit(Exception): pass
def ckyorn(prompt, help=""):

ok= 0
while not ok:
try:

a=raw_input(prompt + " [y,n,q,?]: ")
except EOFError:
raise UserQuit
if a.upper() in ['Y', 'N', 'YES', 'NO']: ok= 1
if a.upper() in ['Q', 'QUIT']:
raise UserQuit
if a.upper() in ['?7' 1:
print help
return a.upper() [0]

We can use this function as shown in the following example.

import interaction

answer= interaction.ckyorn(
help= "Enter Y if finished entering data",
prompt= "All done?")

This function transforms an EOFError into a UserQuit exception, and also transforms a user entry of “Q”
W "

or “q” into this same exception. In a longer program, this exception permits a short-circuit of all further
processing, omitting some potentially complex if statements.

Details of the ckyorn() Function Our function uses a loop that will terminate when we have successfully
interpreted an answer from the user. We may get a request for help or perhaps some uninterpretable input
from the user. We will continue our loop until we get something meaningful. The post condition will be that
the variable ok is set to True and the answer, a is one of ("Y", "y", "N", "n").

Within the loop, we surround our raw_input () function with a try suite. This allows us to process any
kind of input, including user inputs that raise exceptions. The most common example is the user entering
the end-of-file character on their keyboard.

We handle the built-in EOFError by raising our UserQuit exception. When we get end-of-file from the user,
we need to tidy up and exit the program promptly.

If no exception was raised, we examine the input character to see if we can interpret it. Note that if the user
enters ‘Q’ or ‘QUIT’, we treat this exactly like as an end-of-file; we raise the UserQuit exception so that the
program can tidy up and exit quickly.

We return a single-character result only for ordinary, valid user inputs. A user request to quit is considered
extraordinary, and we raise an exception for that.

18.4. An Exceptional Example 205

Building Skills in Python, Release 2.6.5

18.5 Complete Exception Handling and The finally Clause

A common use case is to have some final processing that must occur irrespective of any exceptions that may
arise. The situation usually arises when an external resource has been acquired and must be released. For
example, a file must be closed, irrespective of any errors that occur while attempting to read it.

With some care, we can be sure that all exception clauses do the correct final processing. However, this may
lead to a some redundant programming. The finally clause saves us the effort of trying to carefully repeat
the same statement(s) in a number of except clauses. This final step will be performed before the try block
is finished, either normally or by any exception.

The complete form of a try statement looks like this:

try:
suite

except exception , target :
suite

except:
suite

finally: suite

Each suite is an indented block of statements. Any statement is allowed in the suite. While this means that
you can have nested try statements, that is rarely necessary, since you can have an unlimited number of
except clauses.

The finally clause is always executed. This includes all three possible cases: if the try block finishes with
no exceptions; if an exception is raised and handled; and if an exception is raised but not handled. This last
case means that every nested try statement with a finally clause will have that finally clause executed.

Use a finally clause to close files, release locks, close database connections, write final log messages, and
other kinds of final operations. In the following example, we use the finally clause to write a final log
message.

def avgReport(somelList):

try:

print "Start avgReport"

m= avg(someList)

print "Average+15)=", m*1.15
except TypeError, ex:

print "TypeError: ", ex
except ZeroDivisionError, ex:

print "ZeroDivisionError: ", ex
finally:

print "Finish avgReport"

18.6 Exception Functions

The sys module provides one function that provides the details of the exception that was raised. Programs
with exception handling will occasionally use this function.

206 Chapter 18. Exceptions

Building Skills in Python, Release 2.6.5

The sys.exc_info() function returns a 3- tuple with the exception, the exception’s parameter, and a
traceback object that pinpoints the line of Python that raised the exception. This can be used something
like the following not-very-good example.

exception2.py

import sys
import math

a= 2
b= 2
c=1
try:

x1= (-b+math.sqrt(bxb-4*a*c))/(2*a)
x2= (-b-math.sqrt(bxb-4*axc))/(2*a)
print x1, x2

except:
e,p,t= sys.exc_info()
print e,p

This uses multiple assignment to capture the three elements of the sys.exc_info() tuple , the exception
itself in e, the parameter in p and a Python traceback object in t.

This “catch-all” exception handler in this example is a bad policy. It may catch exceptions which are better
left uncaught. We’ll look at these kinds of exceptions in Built-in Exceptions. For example, a RuntimeError
is something you should not bother catching.

18.7 Exception Attributes

Exceptions have one interesting attribute. In the following example, we’ll assume we have an exception

object named e. This would happen inside an except clause that looked like ‘except SomeException, e:’

Traditionally, exceptions had a message attribute as well as an args attribute. These were used inconsis-
tently.

When you create a new Exception instance, the argument values provided are loaded into the args attribute.
If you provide a single value, this will also be available as message; this is a property name that references
‘args [0]".

Here’s an example where we provided multiple values as part of our Exception.

>>> a=Exception(1,2,3)

>>> a.args

1, 2, 3

>>> a.message

__main__:1: DeprecationWarning: BaseException.message has been deprecated as of
Python 2.6

Here’s an example where we provided a single value as part of our Exception; in this case, the message
attribute is made available.

>>> b=Exception("0Oh dear")
>>> b.message
'Oh dear'

18.7. Exception Attributes 207

Building Skills in Python, Release 2.6.5

>>> b.args
('0Oh dear',)

18.8 Built-in Exceptions

The following exceptions are part of the Python environment. There are three broad categories of exceptions.
o Non-error Exceptions. These are exceptions that define events and change the sequence of execution.

e Run-time Errors. These exceptions can occur in the normal course of events, and indicate typical
program problems.

e Internal or Unrecoverable Errors. These exceptions occur when compiling the Python program or are
part of the internals of the Python interpreter; there isn’t much recovery possible, since it isn’t clear
that our program can even continue to operate. Problems with the Python source are rarely seen by
application programs, since the program isn’t actually running.

Here are the non-error exceptions. Generally, you will never have a handler for these, nor will you ever raise
them with a raise statement.

exception StopIteration
This is raised by an iterator when there is no next value. The for statement handles this to end an
iteration loop cleanly.

exception GeneratorExit
This is raised when a generator is closed by having the close () method evaluated.

exception KeyboardInterrupt
This is raised when a user hits ctrl-C to send an interrupt signal to the Python interpreter. Gener-
ally, this is not caught in application programs because it’s the only way to stop a program that is
misbehaving.

exception SystemExit
This exception is raised by the sys.exit() function. Generally, this is not caught in application
programs; this is used to force a program to exit.

Here are the errors which can be meaningfully handled when a program runs.

exception AssertionError
Assertion failed. See the assert statement for more information in The assert Statement

exception AttributeError
Attribute not found in an object.

exception EOFError
Read beyond end of file.

exception FloatingPointError
Floating point operation failed.

exception I0Error
I/O operation failed.

exception IndexError
Sequence index out of range.

exception KeyError
Mapping key not found.

208 Chapter 18. Exceptions

Building Skills in Python, Release 2.6.5

exception OSError
OS system call failed.

exception OverflowError
Result too large to be represented.

exception TypeError
Inappropriate argument type.

exception UnicodeError
Unicode related error.

exception ValueError
Inappropriate argument value (of correct type).

exception ZeroDivisionError
Second argument to a division or modulo operation was zero.

The following errors indicate serious problems with the Python interepreter. Generally, you can’t do anything
if these errors should be raised.

exception MemoryError
Out of memory.

exception RuntimeError
Unspecified run-time error.

exception SystemError
Internal error in the Python interpreter.

The following exceptions are more typically returned at compile time, or indicate an extremely serious error
in the basic construction of the program. While these exceptional conditions are a necessary part of the
Python implementation, there’s little reason for a program to handle these errors.

exception ImportError
Import can’t find module, or can’t find name in module.

exception IndentationError
Improper indentation.

exception NameError
Name not found globally.

exception NotImplementedError
Method or function hasn’t been implemented yet.

exception SyntaxError
Invalid syntax.

exception TabError
Improper mixture of spaces and tabs.

exception UnboundLocalError
Local name referenced but not bound to a value.

The following exceptions are part of the implementation of exception objects. Normally, these never occur
directly. These are generic categories of exceptions. When you use one of these names in a catch clause, a
number of more more specialized exceptions will match these.

exception Exception
Common base class for all user-defined exceptions.

18.8. Built-in Exceptions 209

Building Skills in Python, Release 2.6.5

exception StandardError
Base class for all standard Python errors. Non-error exceptions (StopIteration, GeneratorExit,
KeyboardInterrupt and SystemExit) are not subclasses of StandardError.

exception ArithmeticError
Base class for arithmetic errors. This is the generic exception class that includes OverflowError,
ZeroDivisionError, and FloatingPointError.

exception EnvironmentError
Base class for errors that are input-output or operating system related. This is the generic exception
class that includes I0OError and OSError.

exception LookupError
Base class for lookup errors in sequences or mappings, it includes IndexError and KeyError.

18.9 Exception Exercises

1. Input Helpers. There are a number of common character-mode input operations that can benefit
from using exceptions to simplify error handling. All of these input operations are based around a loop
that examines the results of raw__input and converts this to expected Python data.

All of these functions should accept a prompt, a default value and a help text. Some of these have
additional parameters to qualify the 1ist of valid responses.

All of these functions construct a prompt of the form:
your prompt [valid input hints ,?7,q]:

If the user enters a 7, the help text is displayed. If the user enters a ¢, an exception is raised that indi-
cates that the user quit. Similarly, if the KeyboardInterrupt or any end-of-file exception is received,
a user quit exception is raised from the exception handler.

Most of these functions have a similar algorithm.

User Input Function

(a) Construct Prompt. Construct the prompt with the hints for valid values, plus ‘?’ and ‘q’.
(b) While Not Valid Input. Loop until the user enters valid input.
Try the following suite of operations.
Prompt and Read. Use raw_input () to prompt for and read a reply from the user.
Help?. If the user entered “?”, provide the help message.
Quit?. If the user entered “q” or “Q”, raise a UserQuit exception.
Other. Try the following suite of operations

Convert. Attempt any conversion. Some inputs will involve numeric, or date-
time conversions.

Validate. If necessary, do any validation checks checks. For some prompts, there
will be a fixed list of valid answers. There may be a numeric range or a date range.
For other prompts, there is no checking required.

If the input passes the validation, break out of the loop. This is our hoped-for
answer.

210 Chapter 18. Exceptions

Building Skills in Python, Release 2.6.5

In the event of an exception, the user input was invalid.

Nothing?. If the user entered nothing, and there is a default value, return the default
value.

In the event of any other exceptions, this function should generally raise a UserQuit exception.
(c) Result. Return the validated user input.
Functions to implement

ckdate Prompts for and validates a date. The basic version would require dates have a
specific format, for example mm/dd/yy. A more advanced version would accept a string
to specify the format for the input. Much of this date validation is available in the time
module, which will be covered in Dates and Times: the time and datetime Modules.
This function not return bad dates or other invalid input.

ckint Display a prompt; verify and return an integer value

ckitem Build a menu; prompt for and return a menu item. A menu is a numbered list of
alternative values, the user selects a value by entering the number. The function should
accept a sequence of valid values, generate the numbers and return the actual menu item
string. An additional help prompt of "??" should be accepted, this writes the help
message and redisplays the menu.

ckkeywd Prompts for and validates a keyword from a list of keywords. This is similar to
the menu, but the prompt is simply the list of keywords without numbers being added.

ckpath Display a prompt; verify and return a pathname. This can use the os.path module
for information on construction of valid paths. This should use fstat to check the user
input to confirm that it actually exists.

ckrange Prompts for and validates an integer in a given range. The range is given as
separate values for the lowest allowed and highest allowed value. If either is not given,
then that limit doesn’t apply. For instance, if only a lowest value is given, the valid
input is greater than or equal to the lowest value. If only a highest value is given, the
input must be less than or equal to the highest value.

ckstr Display a prompt; verify and return a string answer. This is similar to the basic
raw_input (), except that it provides a simple help feature and raises exceptions when
the user wants to quit.

cktime Display a prompt; verify and return a time of day. This is similar to ckdate; a more
advanced version would use the time module to validate inputs. The basic version can
simply accept a ‘hh:mm:ss’ time string and validate it as a legal time.

ckyorn Prompts for and validates yes/no. This is similar to ckkeywd, except that it tolerates
a number of variations on yes (YES, y, Y) and a number of variations on no (NO, n, N).
It returns the canonical forms: Y or N irrespective of the input actually given.

18.10 Style Notes

Built-in exceptions are all named with a leading upper-case letter. This makes them consistent with class
names, which also begin with a leading upper-case letter.

Most modules or classes will have a single built-in exception, often called Error. This exception will be
imported from a module, and can then be qualified by the module name. Modules and module qualification
is covered in Components, Modules and Packages. It is not typical to have a complex hierarchy of exceptional
conditions defined by a module.

18.10. Style Notes 211

Building Skills in Python, Release 2.6.5

18.11 A Digression

Readers with experience in other programming languages may equate an exception with a kind of goto
statement. It changes the normal course of execution to a (possibly hard to find) exception-handling suite.
This is a correct description of the construct, which leads to some difficult decision-making.

Some exception-causing conditions are actually predictable states of the program. The notable exclusions
are I/O Error, Memory Error and OS Error. These three depend on resources outside the direct control of
the running program and Python interpreter. Exceptions like Zero Division Error or Value Error can be
checked with simple, clear if statements. Exceptions like Attribute Error or Not Implemented Error should
never occur in a program that is reasonably well written and tested.

Relying on exceptions for garden-variety errors — those that are easily spotted with careful design or testing
— is often a sign of shoddy programming. The usual story is that the programmer received the exception
during testing and simply added the exception processing try statement to work around the problem; the
programmer made no effort to determine the actual cause or remediation for the exception.

In their defense, exceptions can simplify complex nested if statements. They can provide a clear “escape”
from complex logic when an exceptional condition makes all of the complexity moot. Exceptions should be
used sparingly, and only when they clarify or simplify exposition of the algorithm. A programmer should
not expect the reader to search all over the program source for the relevant exception-handling clause.

Future examples, which use I/O and OS calls, will benefit from simple exception handling. However, excep-
tion laden programs are a problem to interpret. Exception clauses are relatively expensive, measured by the
time spent to understand their intent.

212 Chapter 18. Exceptions

CHAPTER

NINETEEN

ITERATORS AND GENERATORS

The yield Statement

We’ve made extensive use of the relationship between the for statement and various kinds of iterable con-
tainers without looking too closely at how this really works.

In this chapter, we’ll look at the semantics of iterators in Ilterator Semantics; this includes their close
relationshp to an iterable container, and the for statement. We can then look at the semantics of generator
functions in Generator Function Semantics, and talk about the syntax for defining a generator function in
Defining a Generator Function.

We'll look at other built-in functions we use with iterators in Generator Functions.
We'll review statements related to the use of iterators in Generator Statements.

We’ll provide more places where iterators are used in [terators Fverywhere, as well as an in-depth example
in Generator Function Exzample.

When we see how to define our own classes of objects, we’ll look at creating our own iterators in Creating
or Extending Data Types.

19.1 Iterator Semantics

The easiest way to define an iterator (and the closely-related concept of generator function) is to look at the
for statement. The for statement makes use of a large number of iterator features. This statement is the
core use case for iterators, and we’ll use it to understand the interface an iterator must provide.

Let’s look at the following snippet of code.

for i in (1, 2, 3, 4, 5):
print i

Under the hood, the for statement engages in the following sequence of interactions with an iterable object
(the tuple (1,2,3,4,5)).

1. The for statement requests an iterator from the object. The for statement does this by evaluating the
iter () function on the object in the in clause.

The working definition of iterable is that the object responds to the iter () function by returning an
iterator. All of the common containers (str, list, tuple, dict, set) will respond to the iter()
function by returning an iterator over the items in the container. A dict iterator will yield the keys
in the mapping.

213

Building Skills in Python, Release 2.6.5

2. The for statement uses the next () function to evaluate the the iterator’s next () method and assigns
the resulting object to the target variable. In this case, the variable i is assigned to each object.

3. The for statement evaluates the suite of statements. In this case, the suite is just a print statement.
4. The for statement continues steps 2 and 3 until an exception is raised.
If the exception is a StopIteration, this is handled to indicate that the loop has finished normally.

The for statement is one side of the interface; the other side is the iterator object itself. From the above
scenario, we can see that an iterator must define a __next__() method that the for statement can use. This
method does one of two things.

o Returns the next item from a sequence (or other container) or
e Raises the StopIteration exception.

To do this, an iterator must also maintain some kind of internal state to know which item in the sequence
will be delivered next.

When we describe a container as iterable, we mean that it responds to the built-in iter () function by
returning an iterator object that can be used by the for statement. All of the sequence containers return
iterators; set, dict and files also return iterators. In the case of a dict, the iterator returns the dict keys
in no particular order.

Iterators in Python. As noted above, all of the containers we’ve seen so far have the iterable interface.
This means that the container will return an iterator object that will visit all the elements (or keys) in the
container.

It turns out that there are many other uses of iterators in Python. Many of the functions we’ve looked at
work with iterators.

We'll return to this in Iterators Everywhere.

Defining Our Own Iterators. There are two ways to define our own iterators. We can create an object
that has the iterator interface, or we can define a generator function. Under the hood, a generator function
will have the iterator interface, but we’re saved from having to create a class with all the right method
function names.

We'll look at Generator Functions in Generator Function Semantics.

We'll look at defining an Iterator class in Data + Processing = Objects.

19.2 Generator Function Semantics

A generator function is a function that can be used by the for statement as if it were an iterator. A generator
looks like a conventional function, with one important difference: a generator includes the yield statement.

The essential relationship between a generator function and the for statement is the following.

1. The for statement calls the generator. The generator begins execution and executes statements in
the suite up to the first yield statement. The yield creates the initial value for the for statement to
assign.

2. The for statement applies the built-in next () function to the generator function’s hidden next ()
method. The value that was returned by the yield statement is assigned to the target variable.

3. The for statement evaluates it’s suite of statements.

4. The for statement applies the built-in next() function to the generator function’s hidden next ()
method. The generator resumes execution after the yield statement. When the generator function
gets to another yield statement, this value creates a value for the for statement.

214 Chapter 19. Iterators and Generators

Building Skills in Python, Release 2.6.5

5. The for statement continues steps 3 and 4 until the generator executes a return statement (or runs
past the end of it’s suite). Either situation will raise the StopIteration exception.

When a StopIteration is raised, it is handled by the for statement as a normal termination of the
loop.

What we Provide. Generator function definition is similar to function definition (see Functions). We
provide three pieces of information: the name of the generator, a list of zero or more parameters, and a
suite of statements that yields the output values. The suite of statements must include at least one yield
statement.

We evaluate a generator in a for statement by following the function’s name with ‘() enclosing any argument
values. The Python interpreter evaluates the argument values, then applies the generator. This will start
execution of the the generator’s suite.

Once the generator has started, the generator and the for statement pass control back and forth. The
generator will yield objects and the for statement consumes those objects.

This back-and-forth between the for statement and the generator means that the generator’s local variables
are all preserved. In other words, a generator function has a peer relationship with the for statement;
it’s local variables are kept when it yields a value. The for suite and the generator suite could be called
coroutines.

Example: Using a Generator to Consolidate Information. Lexical scanning and parsing are both
tasks that compilers do to discover the higher-level constructs that are present in streams of lower-level
elements. A lexical scanner discovers punctuation, literal values, variables, keywords, comments, and the
like in a file of characters. A parser discovers expressions and statements in a sequence of lexical elements.

Lexical scanning and parsing algorithms consolidate a number of characters into tokens or a number of tokens
into a statement. A characteristic of these algorithms is that some state change is required to consolidate the
inputs prior to creating each output. A generator provides these